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Abstract: We solve the geometry of the closed string field theory five-point vertex. Our

solution is calculated in terms of quadratic Strebel differentials which are found numerically

all over the relevant subspace of the moduli space of spheres with five punctures. Part of the

boundary of the reduced moduli space is described in terms of an algebraic curve, while the

remaining part has to be evaluated numerically. We use this data to compute the contact

term of five tachyons and estimate its uncertainty to be of about 0.1%. To put to a test

the theory and the computations done, we calculate the contact term of five dilatons. In

agreement with the dilaton theorem, it is found to cancel the term obtained from the tree

level Feynman diagrams built with three- and four-vertices. This cancellation, achieved

with a precision of about 0.1%, is within the estimated margin error on the contact term

and is therefore a very good evidence that our computations are reliable. The techniques

and numerical algorithm developed in this paper make it possible to compute the contact

amplitude of any five off-shell closed bosonic string states.
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1. Introduction

The object of this paper is the explicit computation of the quintic term of the action of

closed bosonic string field theory (CSFT). This action, formally constructed in [1 – 4], is

nonpolynomial. This is in contrast with Witten’s string field theory [5] which is cubic, i.e.

Feynman diagrams constructed with three-vertices are enough to cover (exactly once) the

whole moduli space of Riemann surfaces with N punctures on the boundary. In CSFT it

is not possible to do so, The Feynman diagrams with closed three-vertices do not suffice

to construct all spheres with four punctures, one has to introduce, in the action, a contact

term of order four in the string field to account for the remaining four-punctured spheres.

But this is not yet enough, one has to introduce also a five-vertex because the Feynman

diagrams with three- and four-vertices do not cover the whole moduli space of spheres with

five punctures. And so on, one must put in the action, contact terms of all orders. In this

paper we will discuss only the classical action, but if we were to consider diagrams with

loops, we would face a similar problem; namely the vertices of the classical action are not
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enough to generate all Riemann surfaces of genus one; and so on, one must introduce terms

at all genii.

Being able to explicitly compute the whole action would be immensely useful in un-

derstanding nonperturbative physics of closed strings. The hot problem that we have in

mind is, in particular, to understand if closed bosonic string theory has a stable vacuum,

and what would the theory look like in this vacuum. The approach that we are taking, is

by order truncation of the CSFT action, i.e. we truncate it to a polynomial of a given order

in the string field. The simplest nontrivial truncation is done by keeping the quadratic and

cubic terms only. In [6], Kostelecký and Samuel did precisely that; they then truncated the

string field itself by keeping only the tachyon and all the massless fields. In this approxi-

mation they found a locally stable vacuum in which the tachyon had a positive expectation

value.

The next order of approximation is to keep the quartic term as well. The computation

of this term is already seriously complicated. The reason lies in the fact that, in order

to compute a contact amplitude with N external states, one has to integrate a certain

correlator over a region of the moduli space of spheres with N punctures (we call this

region the reduced moduli space, it corresponds to all spheres that cannot be constructed

with Feynman diagrams), which has real dimensionality 2(N − 3). The expression of the

correlator at a point in the reduced moduli space, depends on the geometry of the vertex

at this point, which in turn is given by the solution of a minimal area problem [4]. For

the cubic vertex N = 3, there is no moduli space to integrate over and it is thus easy to

calculate. But for the quartic vertex, there is a two-dimensional reduced moduli space. This

vertex was solved numerically in [7]. The solution given there consisted of the boundary of

the reduced moduli space in the complex plane, and everywhere in this region the geometry

of the vertex was expressed with a quadratic differential (see [8, 9] for details on quadratic

differentials) given in terms of a complex parameter a(ξ, ξ̄) depending on the coordinates

on the reduced moduli space. The solution was explicitly given by a reasonably short fit

that can be copied from the paper and used to compute amplitudes with an accuracy of

about 0.1%.

The results of [7] were checked by Yang and Zwiebach in [10, 11]. For this, they verified

that the quartic term in the effective potential of some marginal fields is seen to vanish as

one increases the truncation level of the string field. A similar analysis was made for the

effective potential of the dilaton. In particular, they found that the contact quartic term

cancels the terms from cubic vertices with a precision of about 0.2%.

In [12, 13], Yang and Zwiebach went on to address the question raised before, whether

closed bosonic string theory has a stable vacuum. They started by realizing that the

tachyon condensate must drive the zero-momentum ghost dilaton. Indeed this state with

a peculiar ghost structure, given by

|D〉 = (c1c−1 − c̄1c̄−1) |0〉 (1.1)

has to be included in the condensate as soon as one considers the quartic vertex.1 This

stems from the fact that the antighost insertion in the correlator, can make the ghost

1Several years before the quartic vertex was solved in [7], Belopolsky [14] managed to calculate the
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numbers work so that amplitudes with a single dilaton, for example three tachyons and a

dilaton, are nonzero. They truncated the string field to level four, including the tachyon

(level zero), the dilaton (level two) and four massive scalar fields at level four. And they

found that the closed string field theory potential has a local minimum where both the

tachyon and dilaton take positive expectation values. They also noticed that the depth

of this minimum tended to decrease as the level increases, and they made the proposition

that this vacuum should have a vanishing action density. They supported this claim by

looking at the low-energy effective action of the tachyon, dilaton and metric. They found

that if this action has a stable vacuum, its depth must be zero. Although the numerics to

level four seemed to confirm this claim, a recent computation to level ten [15] shows that,

at quartic order, the value of the potential at the stable vacuum is actually negative and

non-zero. The question now is whether higher order terms in the CSFT action can make

the shallowness of the potential go to zero, or if it stays finite.

It is clear at this point that we need the quintic term of the CSFT action. In the

present paper we solve numerically the geometry of the quintic vertex. This is again

done with quadratic differentials. We present in details the algorithm to solve the Strebel

condition and we spend quite some time describing the reduced moduli space of spheres

with five punctures. It will turn out that we can split it into 120 regions, and need to

describe only one of them, that we call A5. We undertake the description of the boundary

of A5, and to our pleasant surprise we find that its projection on one of its two complex

coordinates (corresponding to the two unfixed punctures in the uniformizer coordinate)

can be described algebraically in terms of an algebraic curve, that will be found from

the solution of the class of quadratic differentials with two double zeros. The rest of the

boundary will be solved numerically. After this is done, we can integrate correlators over

the reduced moduli space. The simplest one is the term with five tachyons. We describe

in details how we do this integration and how we estimate the uncertainty in the result.

In order to gain confidence in this result, and à fortiori in the machinery developed and

the numerical results produced, we must check our algorithm in some way. For this, we

compute the effective potential of the dilaton to order five. As the dilaton theorem claims,

this should be identically zero. The term of order five is composed of two terms, namely the

contact term that we calculate with our algorithm, and the term from Feynman diagrams

with vertices of lower order, that we calculate with the techniques and results of [11, 15].

The cancellation is achieved with an accuracy of about 0.1%, falling well within the 0.5%

estimated error on the five-dilaton contact term. We therefore claim that our algorithm

and result for the five-tachyon term, are reliable. The computation of terms of higher

levels, necessary in order to pursue the study of the nonperturbative vacuum of [12, 15], is

now possible and will be done in a future publication [16].

We think it is of interest to give some orders of magnitude related to the algorithm

developed here. Its implementation on a computer is done in the C++ language, and

the code is more than 10,000 lines long. The complete and accurate computation of the

tachyon effective potential to order four and he found that it had no minimum. This result, however, didn’t

take into account the dilaton. In fact, it is understood now that the tachyon effective potential doesn’t

make much sense because one cannot integrate out the massless dilaton.
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moduli space and the quadratic differentials inside it, takes several days to compute on a

desktop computer and generates about one GByte of data. Once this is done, the accurate

computation of an integral takes several hours. Unfortunately, the size of the data makes

it impossible for now to express the numerical solution in terms of a reasonably short fit,

as we did for the quartic vertex [7].

The paper is structured as follows: We end this section by a short summary on the

CSFT action. In section 2, we construct the quadratic differentials pertinent to the five-

point vertex, and we study some of their limiting cases in section 3. We then describe in

section 4 how to solve the Strebel condition numerically. The reduced moduli space and

the way to compute it are described in section 5. We can then integrate to obtain the first

result, namely the five-tachyon contact term, this is done in section 6. The reliability check

with the computation of the dilaton effective potentials is done in section 7. We end with

some discussions on the present results and prospects in section 8.

We now summarize the CSFT action and fix our notation. With α′ = 2, the closed

string field theory action is [1, 2]

S = − 1

κ2

(

1

2
〈Ψ|c−0 QB|Ψ〉 +

1

3!
{Ψ,Ψ,Ψ} +

1

4!
{Ψ,Ψ,Ψ,Ψ} +

1

5!
{Ψ,Ψ,Ψ,Ψ,Ψ} + . . .

)

,

(1.2)

where c−0 = 1
2(c0 − c̄c), QB is the BRST charge and {. . .}, are the multilinear string

functions. In this paper we won’t need to know much about the string field Ψ, except

that when considering tachyon condensation we keep only scalars with zero-momentum.

Namely

|Ψ〉 = t |T 〉 + d |D〉 +
∑

i>2

ψi |Ψi〉 , (1.3)

where Ψi, i > 2, are massive scalars, and the first two fields are respectively the tachyon

|T 〉 = c1c̄1|0〉 , (1.4)

and the dilaton (1.1). We will often use the notation Vψi1
ψi2

...ψiN
to designate the coefficient

of ψi1ψi2 . . . ψiN in the potential (and it is understood that ψ1 = t and ψ2 = d).

In the CSFT constructed in [1 – 4], the interacting worldsheet id endowed with the

following geometry: Every external state spans a semi-infinite cylinder of perimeter 2π,

and these cylinders intersect on a prism. The prisms of a contact term must have the

characteristic that all their nontrivial closed curves must have length greater than or equal

to 2π, which for the five-point vertex is equivalent to all edges having length smaller than

or equal to π. It can be shown that all other prisms are obtained from Feynman diagrams

with vertices of lower orders. The relevant prism for the five-point contact term was first

discussed in [3]. It is shown on figure 1. It is made of two opposing triangles, connected

with three quadrilaterals. The perimeter conditions on the cylinders can be written

`7 = `1 + `4 − π , `1 + `2 + `3 = 2π ,

`8 = `2 + `5 − π , `4 + `5 + `6 = 2π

`9 = `3 + `6 − π .

(1.5)
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`1

`4 `5

`6

`3

`2

`9

`7

`8

Figure 1: The relevant prism of the five-point vertex. The labeling of lengths will be kept as

shown.

Those are five conditions, leaving four independent lengths, matching the real dimension-

ality of the moduli space of spheres with five punctures. All other prisms with five faces

would have less than four independent lengths and thus correspond to subsets of the moduli

space with measure zero. Although they don’t contribute to the integration over moduli

space, some of these prisms will be considered in section 3 because they will be useful to

calculate the boundaries of the second kind described in section 5.

The usefulness of this particular geometry is that it arises from a quadratic differen-

tial [8] that has second order poles at the punctures where the external states are inserted,

and verifies the Strebel condition that its critical graph has measure zero. The ring do-

mains correspond to the semi-infinite cylinders and the critical graph corresponds to the

prism.

To be concrete, we will always map the sphere on the complex plane and we will fix

the topology of the vertex from the beginning, i.e. we will use the labeling of zeros and

poles as indicated on the right of figure 2. Fixing the topology means that we will only

consider configurations obtained from this one by a continuous transformation and without

any two zeros merging. In other words, the punctures on quadrilateral faces will always be

mapped to z = 0, z = 1 and z = ∞, whereas the remaining punctures at ξ1 and ξ2 will

always correspond to triangular faces. In these notations, the two complex numbers ξ1 and

ξ2 parameterize the moduli space of five-punctured spheres.

2. Quadratic differentials

To describe the right geometry and the local coordinates on a punctured sphere, we need

a quadratic differential ϕ, transforming like

ϕ = φ(z)(dz)2 = φ(w)(dw)2 (2.1)

under a conformal change of variable. It should be holomorphic everywhere except at the

punctures zI , where it has poles of order two with ”residue” minus one, and has thus the
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expansion

φ(z) =
−1

(z − zI)2
+ O

(

(z − zI)
−1

)

. (2.2)

If we place a puncture at infinity, as we will, the expansion of ϕ in the coordinate t = 1/z

is

φ(t) =
−1

t2
+ O

(

t−1
)

. (2.3)

It is easily seen that the quadratic differentials obeying these conditions are given by

φ(z) = −z6 + P5(z) + a1 z(z − 1)(z − ξ1)(z − ξ2) + a2 z2(z − 1)(z − ξ1)(z − ξ2)

z2 (z − 1)2 (z − ξ1)2 (z − ξ2)2
. (2.4)

Here P5(z) is a polynomial of order five which is partially determined by the residue

conditions and will be given by (2.12), and a1 and a2 do not change the residue conditions

at the poles. The coefficient of z6 in the numerator must be −1 for the residue at infinity

to be −1. The parameters a1 and a2 will be determined by the Strebel condition, namely

the condition that the critical graph of ϕ closes (see [8, 9, 14, 7] for more details). It will

be enough to know here that the Strebel solution gives the quadratic differential needed

for the vertex. It can be expressed as the requirement that the complex lengths between

any two zeros z1 and z2 of the quadratic differential, are real

Im

∫ z2

z1

√

φ(z) dz = 0 . (2.5)

Solving numerically the Strebel condition will be the object of section 4. For now let us go

back to P5(z). We will write it in the form

P5(z) = b5 z5 + b4 z4 + P3(z) , (2.6)

where

P3(z) = b3 z3 + b2 z2 + b1 z + b0 . (2.7)

The four coefficients of P3(z) can be completely determined, in terms of ξ1, ξ2, b5 and b4,

by the four residue conditions at the finite poles 0, 1, ξ1 and ξ2. These conditions can be

written

y0 ≡ P3(0) = ξ2
1 ξ2

2

y1 ≡ P3(1) = −1 − b5 − b4 + (1 − ξ1)
2(1 − ξ2)

2

y2 ≡ P3(ξ1) = −ξ6
1 − b5 ξ5

1 − b4 ξ4
1 + ξ2

1(ξ1 − 1)2(ξ1 − ξ2)
2

y3 ≡ P3(ξ2) = −ξ6
2 − b5 ξ5

2 − b4 ξ4
2 + ξ2

2(ξ2 − 1)2(ξ1 − ξ2)
2 . (2.8)

The polynomial P3 that satisfies (2.8) can be written

P3(z) =
(z − 1)(z − ξ1)(z − ξ2)

−ξ1 ξ2
y0 +

z(z − ξ1)(z − ξ2)

(1 − ξ1)(1 − ξ2)
y1 +

+
z(z − 1)(z − ξ2)

ξ1(ξ1 − 1)(ξ1 − ξ2)
y2 +

z(z − 1)(z − ξ1)

ξ2(ξ2 − 1)(ξ2 − ξ1)
y3 . (2.9)

– 6 –
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Now we want to choose b5 and b4 in (2.6) in such a way that the expression (2.9) is as

simple as possible. For this we note, from (2.8), that if

b4 + b5 ξ1 + ξ2
1 = 0

and b4 + b5 ξ2 + ξ2
2 = 0 , (2.10)

then the third and fourth terms in (2.9) will be simplified. Even better, since the solution

of (2.10) is

b5 = −(ξ1 + ξ2)

b4 = ξ1 ξ2 , (2.11)

we have that −1− b5 − b4 = −(1− ξ1)(1− ξ2), and thus we see, from (2.8), that the second

term will be simplified too. And obviously, since y0 = ξ2
1ξ2

2 , we also have that the first term

is simplified. Thus, making the choice (2.11) for b5 and b4, we have that

P5(z) = −s z5 + t z4 + (−s + v(s − 1)) z3 +
(

t + s2 + v(1 − s − t)
)

z2 + t (v − 2s) z + t2 ,

(2.12)

where

s ≡ ξ1 + ξ2

t ≡ ξ1 ξ2

v ≡ (ξ1 − ξ2)
2 = s2 − 4t (2.13)

are symmetric expressions in ξ1 and ξ2.

We note, for future reference, that the derivatives of φ(z) with respect to a1 and a2

are

∂φ(z)

∂a1
=

−1

z (z − 1) (z − ξ1) (z − ξ2)
,

∂φ(z)

∂a2
=

−1

(z − 1) (z − ξ1) (z − ξ2)
. (2.14)

The most uniform prism. We call the most uniform prism, the prism (figure 1) which

has two equilateral triangles. The lengths of the edges of the triangles must therefore be
2π
3 , and the three edges connecting the two triangles must have lengths π

3 . We want to

describe the quadratic differential of this configuration in the z-plane, where we will put

three punctures at respectively zero, one and infinity. As already mentioned, we have to

start by deciding which faces will correspond to these three punctures. Since we are later

going to consider the subgroup of PSL(2, C) conformal transformations that permute the

aforementioned punctures, it will be simplest to map the three quadrilateral faces on z = 0,

z = 1 and z = ∞. We must then stick to this choice because it would be very difficult

for the numerical algorithm to switch between configurations of different topologies; this

will be discussed more extensively in section 5. For the purpose of finding the quadratic

differential of the most uniform prism, it is easier to work in another coordinate w, where

– 7 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
3

zw

0−1 0

w3

w4

h

w5

w1

w2

w6

1

z2

z6

z3

z4

z5

z1

`2

`3

`4 `5

`7`9`8

`1

`6

eiπ/3

e−iπ/3

ξ1 = eiπ/3

ξ2 = e−iπ/3

Figure 2: The critical graph of the quadratic differential corresponding to the most uniform prism,

in the w-plane where the symmetry is obvious, and in the z-plane in which the three quadrilateral

punctures are at the standard points 0, 1, ∞.

the symmetry of the prism is more visible (see figure 2). In the w coordinate, φ(w) has

three poles at the vertices of an equilateral triangle, respectively w = −1, w = e
iπ
3 and

w = e−
iπ
3 , which correspond to the quadrilateral faces. One pole is at its center w = 0, and

the last pole is at infinity. By contemplating the left half of figure 2, we can immediately

write the ansatz for the zeros wi, i = 1, . . . , 6, of φ(w)

w1 = β , w2 = e
2iπ
3 β , w3 = e

4iπ
3 β

w4 = γ , w5 = e
2iπ
3 γ , w6 = e

4iπ
3 γ , (2.15)

where β and γ are positive real numbers and γ > β. The quadratic differential for this

configuration is thus

φ(w) =
−(w − β)(w − γ)(w − e

2iπ
3 β)(w − e

2iπ
3 γ)(w − e

4iπ
3 β)(w − e

4iπ
3 γ)

w2 (w + 1)2
(

w − e
iπ
3

)2 (

w − e−i π
3

)2

= −
(

w3 − β3
) (

w3 − γ3
)

w2 (w3 + 1)2
. (2.16)

The residue condition at w = −1 and w = 0 are respectively

(β3 + 1) (γ3 + 1)

9
= 1 , β3 γ3 = 1 . (2.17)

The solution to the system (2.17) with the constraint γ > β > 0 is

β =

(

7 − 3
√

5

2

)
1
3

, γ =

(

7 + 3
√

5

2

)
1
3

. (2.18)
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Now we express the quadratic differential in the z coordinate. We want to map the

three quadrilateral punctures to z = 0, z = 1 and z = ∞. Namely z = h(w), where

h(−1) = 0 , h(e
iπ
3 ) = 1 , h(e−

iπ
3 ) = ∞ , (2.19)

whence

z = h(w) = e
iπ
3

1 + w

w − e−
iπ
3

, (2.20)

which has the inverse

w = h−1(z) =
e−

iπ
3 z + e

iπ
3

z − e
iπ
3

. (2.21)

Remembering that

φ(z) = φ(w)

(

dw

dz

)2

, (2.22)

we find

φ(z) = −z6 − 3z5 + 3z4 − z3 + 3z2 − 3z + 1

z2(z − 1)2(z − ξ1)2(z − ξ2)2
, (2.23)

where the poles ξ1 and ξ2 are

ξ1 = h(∞) = e
iπ
3

ξ2 = h(0) = e−
iπ
3 . (2.24)

Now we can easily determine the parameters a1 and a2 by comparing (2.4) and (2.12)

with (2.23). We find

a1 = a2 = −2 . (2.25)

At last, the zeros of φ(z) are given by

zi = h(wi) , i = 1, . . . , 6 , (2.26)

and their positions are shown on figure 2. It is important to know an exact quadratic

differential for the numerical algorithm to start with. It will then cover all the reduced

moduli space by successive deformations of this solution, each deformation being relatively

small for the Newton method to converge (more on this in section 4).

3. Limits of quadratic differentials

One of the most complicated problems in the computation undertaken in this paper, is to

describe the boundary of the reduced moduli space. As was already noted in [3], there are

two kinds of boundaries. When the length of one of the triangle edges is π, we are on a

boundary of the first kind, corresponding to the situation in which the vertex can be built

as a Feynman diagram with a propagator of zero length. There are also boundaries of the

second kind, when one of the lengths `7, `8 or `9 is zero. These are internal boundaries, they

connect prisms with different assignations of punctures to faces. They are not boundaries

of the whole reduced moduli space, but they are boundaries of the region A5 that we will

– 9 –
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consider by keeping a fixed assignment of punctures to faces (see section 5). We will also

need to consider intersections of boundaries, in particular when two edges have vanishing

lengths. The description of the moduli space will be done in section 5. The problem for

now is that when a length vanishes, the quadratic differential has a double zero and it

becomes numerically ill-conditioned. The goal of this section is precisely to deal with these

limit cases. We can get rid of the numerical difficulties by some analytical work. Actually

in the case of two double zeros, the Strebel differentials can be explicitly described in terms

of an algebraic curve, reducing the numerical work to finding the roots of a polynomial of

order six.2

3.1 Quadratic differentials with one double zero

The general case. When we compute the boundary of the reduced moduli space, we are

led to consider configurations where the quadratic differential has a double zero, or in other

words when an edge collapses to zero length. We have to distinguish whether the collapsed

edge is an edge of a triangle or one of the three edges connecting the two triangles. In

the first case we end up with a face with only two edges, and for this configuration to be

in the reduced moduli space, they need to have length π. The remaining six lengths are

constrained by four residue conditions, and we are therefore left with two real degrees of

freedom. In the second case, we have eight lengths constrained by five residue conditions,

which leave us three degrees of freedom. We are thus going to consider this case only

as this will describe some boundaries of the reduced moduli space. Once we have fixed

the topology and the labeling of zeros and edges (figures 1 and 2 and Equ. (1.5)) in the

z coordinate, we must describe separately the cases where `7, `8 or `9 respectively, are

zero. Since we have now only three real degrees of freedom we can fix ξ1 and only one real

component of ξ2, for example

(ζ|ξ2) ≡ Re ζ Re ξ2 + Im ζ Im ξ2 , (3.1)

where ζ is a given complex number of unit norm. Once these quantities are fixed, the

quadratic differentials with one double zero, satisfying the residue conditions have three

real degrees of freedom, which are for example, Reu, Im u and (iζ|ξ2), where u is the

position of the double zero.

We will thus write

φ(z) = − (z − u)2
(

z4 + P3(z)
)

z2(z − 1)2(z − ξ1)2(z − ξ2)2
, (3.2)

where the cubic polynomial

P3(z) = c3 z3 + c2 z2 + c1 z + c0 (3.3)

2Other analytically solvable limits of quadratic differentials with four and five poles have been studied

in the context of open-closed duality in [17].
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will be completely determined by the following residue conditions at the finite poles

y0 ≡ P3(0) =
ξ2
1 ξ2

2

u2

y1 ≡ P3(1) =

(

(1 − ξ1)(1 − ξ2)

1 − u

)2

− 1

y2 ≡ P3(ξ1) =

(

ξ1(ξ1 − 1)(ξ1 − ξ2)

ξ1 − u

)2

− ξ4
1

y3 ≡ P3(ξ2) =

(

ξ2(ξ2 − 1)(ξ2 − ξ1)

ξ2 − u

)2

− ξ4
2 . (3.4)

The polynomial P3(z) that satisfies (3.4), can be written as in (2.9). Now if we define

v0 ≡ y0

−ξ1 ξ2

v1 ≡ y1

(1 − ξ1)(1 − ξ2)

v2 ≡ y2

ξ1(ξ1 − 1)(ξ1 − ξ2)

v3 ≡ y3

ξ2(ξ2 − 1)(ξ2 − ξ1)
, (3.5)

we have that

P3(z) = (v0 + v1 + v2 + v3) z3 − ((1 + s)v0 + sv1 + (1 + ξ2)v2 + (1 + ξ1)v3) z2 +

+ ((s + t)v0 + tv1 + ξ2v2 + ξ1v3) z +

(

t

u

)2

, (3.6)

where again, s = ξ1 + ξ2 and t = ξ1 ξ2. And the quadratic differential is completely

determined once we give ξ1, ξ2 and u.

The regular pyramid. As we did for the regular configurations, we want to calculate

explicitly the Strebel quadratic differentials with one double zero in the most symmetric

case, a pyramid with a square base (with edges of length π
2 ) and four triangles with edges

of lengths π
2 , 3π

4 and 3π
4 . Again, it is easier to solve the quadratic differential in another

coordinate w, where the symmetry is obvious, and then map it to the z-plane. We will

have three different mappings h1, h2 and h3, whether the vanishing length is `8, `9 or `7

respectively. In the w coordinate we set the double zero u = 0 and four poles around it,

namely at 1, i, −1 and −i. The last pole, corresponding to the base of the pyramid, is at

w = ∞. By symmetry (see top of figure 3), we can then immediately read off the ansatz

for the zeros wi, i = 1 . . . 4 of φ(w), namely

w1 = αe−
iπ
4 , w2 = αe−

3iπ
4 , w3 = αe

3iπ
4 , w4 = αe

iπ
4 , (3.7)

where α is a real positive number. We have thus

φ(w) = −w2(w4 + α4)

(w4 − 1)2
. (3.8)
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w

z

−1

i

1

−i

1

i

−i

0 1 1

1 + i

1 − i

h1

h2

h3

0

0 0

w1w2

w3 w4

z2

z3

z1z2

z4

−1 2

z3

z4

z1

z3
z2

z1

z4

1
2 + i

2

1
2 − i

2

1
2

Figure 3: The regular pyramid in the w-plane and its three mappings to the z-plane with respec-

tively `8 = 0, `9 = 0 and `7 = 0. The double zero is marked with a small circle.

The residue condition at the pole w = 1 gives us

1 + α4

16
= 1 ⇒ α = (15)

1
4 . (3.9)

We now map it in the z-plane to the configuration (lower left of figure 3) which has `8 = 0.

The map is

z = h1(w) =
w − 1

w + 1
. (3.10)

This maps the double zero to

u(1) = h1(0) = −1 , (3.11)

and the poles are

ξ
(1)
1 = h1(i) = i , ξ

(1)
2 = h1(−i) = −i . (3.12)

And the quadratic differential is

φ(1)(z) = −(z + 1)2
(

z4 − 7
2z3 + 6z2 − 7

2z + 1
)

z2(z − 1)2(z + i)2(z − i)2
. (3.13)
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For the configuration with `9 = 0 (lower middle of figure 3), we have

h2(w) =
1

2
(w + 1)

u(2) =
1

2

ξ
(2)
1 =

1

2
(1 + i) , ξ

(2)
2 =

1

2
(1 − i)

φ(2)(z) = −
(

z − 1
2

)2 (

z4 − 2z3 + 3
2z2 − 1

2z + 1
)

z2(z − 1)2
(

z − 1
2(1 + i)

)2 (

z − 1
2 (1 − i)

)2 . (3.14)

And for the configuration with `7 = 0 (lower right of figure 3), we have

h3(w) =
2

w + 1

u(3) = 2

ξ
(3)
1 = 1 + i , ξ

(3)
2 = 1 − i

φ(3)(z) = − (z − 2)2
(

z4 − 1
2z3 + 3

2z2 − 2z + 1
)

z2(z − 1)2 (z − (1 + i))2 (z − (1 − i))2
. (3.15)

It is very useful to have these three exact quadratic differentials to start the Newton

method when plotting the boundaries of the second kind.

3.2 Quadratic differentials with two double zeros

As we will see in section 5, it is important to be able to construct quadratic differentials

with two double zeros. In the present section we will see that we can actually solve the

Strebel condition in terms of an algebraic curve, i.e. everything can be done algebraically

except for a root of a polynomial of order six, which must be found numerically.

From figure 1 and the lengths conditions (1.5), we see that when the quadratic dif-

ferential has two double zero, one face must have only two sides (which must therefore

have length π). It can then be further deduced that only one length is free, with value

`. The other lengths are respectively `, π − ` (two edges) and π. We now look at the

quadratic differential in the w-plane where the puncture at infinity is attached to the face

with two edges, and the punctures of the other two faces which have these edges as a side

are mapped to w = −1 and w = 1. It is readily seen that in this coordinate, the critical

graph must have the symmetry w → −w. This is shown on figure 4. The two remaining

punctures will then be at, say, w = α and w = −α. The two double zeros are at w = u

and w = −u, and the two simple zeros are at w = b and w = −b. Given the length `, we

want to determine the three complex numbers α, u and b.

The quadratic differential ϕ = φ(w)(dw)2 for this configuration is

φ(w) = − (w − u)2 (w + u)2 (w − b) (w + b)

(w − 1)2 (w + 1)2 (w − α)2 (w + α)2
= − (w2 − u2)2 (w2 − b2)

(w2 − 1)2 (w2 − α2)2
. (3.16)

The residue condition at infinity is automatically satisfied by the expression (3.16), and by

symmetry the residue condition at w = −1 is the same as for w = 1, and the condition
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α
b

`

−α−b

u

−u

ππ

π − `

`

π

π − `

Figure 4: The configuration with two double zeros in the w-plane with the particular value ` = 0.8.

The length of each edge is shown.

at w = −α is the same as the one at w = α. We thus have only two independent residue

conditions, at w = 1 and w = α respectively, which read

(1 − u2)2 (1 − b2)

4 (1 − α2)2
= 1 (3.17)

(α2 − u2)2 (α2 − b2)

4α2 (1 − α2)2
= 1 . (3.18)

We are now going to solve the Strebel condition. For this, we need to write that the complex

lengths between any two zeros are real. By symmetry, this is automatically satisfied if one

length, say the length between b and u, is real. We therefore impose

` ≡ `(b, u) ∈ R , (3.19)

where

`(b, u) =

∫ u

b

(w2 − u2)
√

b2 − w2

(1 − w2) (w2 − α2)
dw . (3.20)

And in total we have two complex equations and one real equation to determine six real

parameters, we thus have one free real parameter for the configurations with two double

zeros. We take this parameter to be ` ∈ [0, π/2]. The other values ` ∈ [π/2, π] are trivially

related to the first case by complex conjugation.

The integral in (3.20) can be calculated by doing the substitution y =
√

1 − b2

w2 ,
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whereby

∫

(w2 − u2)
√

b2 − w2

(1 − w2) (w2 − α2)
dw = −i

(

bu

α

)2 ∫ y2
(

y2 −
(

1 − b2

u2

))

(y2 − 1) (y2 − (1 − b2))
(

y2 −
(

1 − b2

α2

)) dy

= i

∫





1

y2 − 1
− 2

√
1 − b2

y2 − (1 − b2)
+ 2

√

1 − b2

α2

y2 −
(

1 − b2

α2

)



 dy (3.21)

=
i

2
ln











(

√

1 − b2

w2 − 1

)(

√

1 − b2

w2 +
√

1 − b2

)2 (

√

1 − b2

w2 −
√

1 − b2

α2

)2

(

√

1 − b2

w2 + 1

)(

√

1 − b2

w2 −
√

1 − b2

)2 (

√

1 − b2

w2 +
√

1 − b2

α2

)2











.

To go from the first to the second line we have made use of the residue conditions (3.17)

and (3.18). So the length between b and u is

` =
π

2
+

i

2
ln











(

√

1 − b2

u2 − 1

)(

√

1 − b2

u2 +
√

1 − b2

)2 (

√

1 − b2

u2 −
√

1 − b2

α2

)2

(

√

1 − b2

u2 + 1

)(

√

1 − b2

u2 −
√

1 − b2

)2 (

√

1 − b2

u2 +
√

1 − b2

α2

)2











.

It is natural to make the definitions

s ≡
√

1 − b2

u2
, t ≡

√

1 − b2 , v ≡
√

1 − b2

α2
. (3.22)

We thus have
(s − 1)(s + t)2(s − v)2

(s + 1)(s − t)2(s + v)2
= ei(π−2`) . (3.23)

We note that the equations (3.17) and (3.18) give us a simple relation between t and v

t − v = −1

2
tv . (3.24)

It will be convenient to define

T ≡ tv . (3.25)

The following identities follow directly from (3.24)

t =

√

T 2

16
+ T − T

4
, v =

√

T 2

16
+ T +

T

4
. (3.26)

We also have from (3.17), (3.22) and (3.26)

s2 = −3T (T − 4)

4(1 + T )
, (3.27)

and

u =
ib√

s2 − 1
, α =

ib√
v2 − 1

. (3.28)
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Let us now rewrite (3.23) as a polynomial equation in s, whose coefficients are expressed

in terms of T and ` with the help of (3.26)

−i cot(`) s5 − (1 + T )s4 − i cot(`)

(

T 2

4
− T

)

s3 +

(

3

4
T 2 + 2T

)

− T 2 = 0 . (3.29)

Using (3.27) this becomes

s = − i

3
tan(`)

18(T + 1)
(

T − 16
9

)

(T − 4)2
(3.30)

Squaring and using again (3.27), we finally get a polynomial equation for T .

P`(T ) ≡ − cot2(`)T (T − 4)5 + 48(T + 1)3
(

T − 16

9

)2

= 0 . (3.31)

We immediately see the solutions of this equation for the particular values ` = π/2 and

` → 0. Namely T = 16/9 and T = 4 respectively. For generic `, this equation must be

solved numerically, following the branch T (` = π/2) = 16/9.

We would like to characterize precisely the branch of the solution of (3.31) that we

must choose. We start by showing that the branches cross only at the points T = 16
9 and

T = 4. Branches cross at multiple zeros, when P`(T ) and P ′
`(T ) vanish simultaneously. We

have

P ′
`(T ) = (3T − 2)

(

−2 cot2(`)(T − 4)4 +
5

3
48(T + 1)2

(

T − 16

9

))

. (3.32)

We define

A ≡ − cot2(`)(T − 4)4 , B ≡ 48(T + 1)2
(

T − 16

9

)

, (3.33)

so that we have the system

0 = P`(T ) = T (T − 4)A + (T + 1)

(

T − 16

9

)

B (3.34)

0 = P ′
`(T ) = (3T − 2)

(

2A +
5

3
B

)

. (3.35)

Let us look at the second equation. If T = 2
3 , (3.31) tells us that cot2(`) = −1. If T 6= 2

3 ,

we must have B = −6
5A, and the first equation tells us that either T = 2

3 or T = −16.

In both of these cases we see from (3.31), that cot2(`) = −1. We have thus shown that

the branches do not cross when ` ∈ (0, π
2 ). From this fact we can completely derive the

topology of the branch diagram (by which we mean the locus in the T -plane formed by all

roots of P`(T ) for all ` ∈ [0, π
2 ]). Since the polynomial P`(T ) is real, the branch diagram

must be symmetric under complex conjugation. Five branches must start (at ` = 0) from

T = 4 and one must start from T = 0, whereas three branches end (when ` = π
2 ) at

T = −1 and two must end at T = 16
9 . Also when ` → π

2 , cot2(`) tends to zero and we have

a solution

T ≈ 48

cot2(`)
→ +∞ ,
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Figure 5: The branch structure of Equ.( 3.31). The branch chosen is the bold one.

and therefore one branch must end at +∞. It is then clear that the only topology com-

patible with all these observations is the one shown on figure 5. The branch corresponding

to the conventions of figure 4 is the one drawn with a bold line. It can be characterized

by the fact that it belongs to the rectangle 16
9 ≤ Re T ≤ 4 and −0.6 ≤ Im T ≤ 0. We will

thus define the function T (`) by

T (`) is the unique solution of



























− cot2(`)T (T − 4)5 + 48(T + 1)3
(

T − 16

9

)2

= 0

16

9
≤ Re T ≤ 4

−0.6 ≤ ImT ≤ 0

(3.36)

From (3.22), (3.26) and (3.28), we can write the expressions of b(`), u(`) and α(`) in terms

of T (`). The only one we will need is α(`)

α(`) = i
1 − T (`)2

8 − T (`) + T (`)
2

√

T (`)2

16 + T (`)
√

2T (`) − 1 − 3
4T (`)2

. (3.37)

This expression will be useful later do describe the boundary of the projection of the

reduced moduli space on the ξ1-plane. We already note the special values

α(0) = 2 −
√

5 , α(π/2) =
27

32
√

6 + 19
√

15
i . (3.38)

4. Solving a quadratic differential numerically

We now want to describe the numerical algorithm to solve a quadratic differential. We will
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focus on the regular quadratic differentials, but the techniques can be applied, with only

trivial modifications, to quadratic differentials with one double zero. We will then recall

how to compute the mapping radii, and we’ll shortly discuss how we compute derivatives

with respect to ξi and ξ̄i.

The central problem is to find, for given poles ξ1 and ξ2, the quadratic differential (i.e.

its parameters a1 and a2) that satisfies the Strebel condition. In other words its critical

graph must close, with its zeros being linked with horizontal trajectories. We remind that

horizontal trajectories are defined by the condition φ(z)(dz)2 > 0, so the Strebel condition

is equivalent to the condition that all the complex lengths between zeros, zi and zf , are

real.

Im `(zi, zf ) = Im

∫ zf

zi

√

φ(z) dz = 0 , i, f = 1, . . . , 6 . (4.1)

We have nine lengths (see figure 2) constrained by the five residue conditions; this leaves us

four independent lengths, which we can choose as `6, `4, `9 and `2 (as labeled on figure 2).

We thus have to solve a system of four real equations of four real unknowns

f(x) = 0 , (4.2)

with f = (Im `6, Im `4, Im `9, Im `2)
T and x = (Re a1, Im a1,Re a2, Im a2)

T . We use New-

ton’s method

xi+1 = xi −
(

∂f

∂x

)−1

· f(xi) , (4.3)

which converges when the initial guess x0 is not too far from the solution. The Jacobian

∂f/∂x can be expressed in terms of derivatives with respect to ai

∂f

∂x
=











Im ∂a1`6 Re ∂a1`6 Im∂a2`6 Re ∂a2`6

Im ∂a1`4 Re ∂a1`4 Im∂a2`4 Re ∂a2`4

Im ∂a1`9 Re ∂a1`9 Im∂a2`9 Re ∂a2`9

Im ∂a1`2 Re ∂a1`2 Im∂a2`2 Re ∂a2`2











(4.4)

We continue this section by explaining how to accurately compute numerically the

complex lengths and their derivatives with respect to ai. And we will continue by describing

the computation of the mapping radii, and of the derivatives of ai with respect to ξj and

ξ̄j .

4.1 The complex lengths

The quintic numerical computation turns out to be very much harder than the quartic. In

the quartic computation [7], there were two weaknesses which had negligible consequences.

First it was hard to tell if the path of integration (which was chosen to be a straight line)

was going on the right side of the poles, hence a possible ambiguity of 2π n in the length.

Combined with the sign ambiguity of the square root, there was a potential problem when

the length was nearly π. Although we could go around this ambiguity in the quartic case,

for the quintic calculation it would be catastrophic. Second, we used the coded ”continuous

square root”, which remembers its last evaluation and tries to detect if the branch cut has
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Figure 6: The critical trajectory C can always be deformed continuously to the contour integration

shown with solid lines.

been crossed between the last two evaluations. Again this is not good enough in the

quintic case; we would inevitably encounter situations when the continuous square root

fails to detect a branch cut, again with catastrophic consequences.

To solve the first problem, we make a conjecture based on observation that the in-

tegration path between two zeros zi and zf along the critical trajectory C that connects

them, can be continuously deformed to the path shown on figure 6, zi to pj to zf without

crossing any pole (other than pj). Here pj is a pole such that the zeros zi and zf are on

the boundary of its ring domain.

`(zi, zf ) =

∫

C

√

φ(z) dz =

∫ z1

zi

√

φ(z) dz +

∫

S

√

φ(z) dz +

∫ zf

z2

√

φ(z) dz .

For numerical reasons that will become clear in a while, we split the integrals along the

straight lines in two, by setting m1 = 1
2(zi + pj) and m2 = 1

2(zf + pj), and writing

`(zi, zf ) =

∫ m1

zi

√

φ(z) dz+

∫ z1

m1

√

φ(z) dz+

∫

S

√

φ(z) dz+

∫ m2

z2

√

φ(z) dz+

∫ zf

m2

√

φ(z) dz .

(4.5)

Now we subtract the poles at z = pj in the integrals from mk to zk, and put them back

together with the integral over S, and we take the limit z1, z2 → pj.

`(zi, zf ) =

∫ m1

zi

√

φ(z) dz −
∫ m2

zf

√

φ(z) dz

+

∫ pj

m1

(

√

φ(z) − r

z − pj

)

dz −
∫ pj

m2

(

√

φ(z) − r

z − pj

)

dz

+ lim
z1,z2→pj

|z1−pj |=|z2−pj |

(∫

S

√

φ(z) dz + r

∫ z1

m1

1

z − pj
dz − r

∫ z2

m2

1

z − pj
dz

)

, (4.6)

where r = ±i is the residue of
√

φ(z) at z = pj . It is now time to define
√

φ(z). We want it

to be continuous on the integration path, in other words, we don’t want to cross any branch

cut. The idea is to calculate the intersection of the integration path with the branch cut
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of the conventional square root, and then change the sign according to the number n(z) of

branch points that were crossed. Since φ(z) is given by an expression of the form

φ(z) =
−P (z)

D(z)2
, (4.7)

we write
√

φ(z) ≡
√

−η2P (z)

ηD(z)
(−1)n(z) , (4.8)

where the square root on the right hand side is the conventional square root with branch cut

the negative real axis. We ignore η for now and focus on n(z). When z0 is on the integration

path, say [zi, pj], we define n(z0) to be the number of times that the conventional square

root
√

−η2P (y) crosses its branch cut when y ∈ [z0, pj ], In particular n(pj) = 0. We start

by parameterizing the path with t ∈ [−1, 1]

z(t) =
pj − zi

2
t +

pj + zi

2
≡ az + b , (4.9)

n(z0) is then given by the number of solutions ti of the equation

Im
(

−η2P (z(ti))
)

= 0 , (4.10)

satisfying the conditions

Re
(

−η2P (z(ti))
)

< 0 and t0 < ti < 1 , (4.11)

where z(t0) = z0. It is then clear that (4.8) will be continuous. Let us now look at the

complex number η in (4.8). We want to choose it in such a way that the residue of
√

φ(z)

at z = pj, which is ±i, takes the negative sign. Remembering that the “residues” of φ(z)

at the poles are −1, we see that P (pj) =
∏

i6=j(pj − pi)
2 = (D′(pj))

2. We thus require that

η satisfies
√

− (ηD′(pj))
2

ηD′(pj)
= −i , (4.12)

which is the case if

Im
(

ηD′(pj)
)

> 0 or
(

Im
(

ηD′(pj)
)

= 0 and Re
(

ηD′(pj)
)

< 0
)

. (4.13)

We will therefore take (demanding also that η has unit norm)

η = i
|D′(pj)|
D′(pj)

eiθ , (4.14)

where θ ∈ (−π
2 , π

2 ) can be chosen arbitrarily, as long as as it is not zero. Indeed if θ = 0, we

would have −η2P (pj) > 0, and (4.10) would have the solution t = 1. This must be avoided

because, due to numerical uncertainties, we would find a solution t = 1 ± ε and it would

be hard to decide whether to count it in n(z) or not. If θ 6= 0, we avoid this problem.
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We can now continue the computation (4.6) by setting r = −i. In the limit considered,

the integral over the arc of circle S is just a bit of the residue, namely

∫

S

√

φ(z)dz = αi(−i) = α , (4.15)

where α is the angle at the tip pj of the triangle zipjzf . We thus have

∫

S

√

φ(z)dz = arg∗
zf − pj

zi − pj
, (4.16)

where arg∗ is the argument function with range [0, 2π), in other words, its branch cut is

on the positive real axis. This is necessary because α might be greater than π, when pj is

on the right of the straight line from zi to zf but still on the left of the path C. The last

two integrals in (4.6) give

lim
z1,z2→pj

|z1−pj |=|z2−pj |

(

−i

∫ z1

m1

1

z − pj
dz + i

∫ z2

m2

1

z − pj
dz

)

= −i lim
z1,z2→pj

|z1−pj |=|z2−pj |

log

(

z1 − pj

z2 − pj

zf − pj

zi − pj

)

= −i log

∣

∣

∣

∣

zf − pj

zi − pj

∣

∣

∣

∣

, (4.17)

where in the last equality, we used the fact that z1 is on the segment from zi to pj and z2

is on the segment from zf to pj, and the argument of the log is therefore a positive real

number. Combining (4.16) and (4.17), we see that the last line of (4.6) is

−i log∗
zf − pj

zi − pj
,

where log∗ z ≡ log |z| + i arg∗ z. In total we have therefore

`(zi, zf ) =

∫ m1

zi

√

φ(z) dz +

∫ pj

m1

(

√

φ(z) +
i

z − pj

)

dz (4.18)

−
(

∫ m2

zf

√

φ(z) dz +

∫ pj

m2

(

√

φ(z) +
i

z − pj

)

dz

)

− i log∗
zf − pj

zi − pj
.

We shall now explain why we have split in two the integrals along the straight lines. For this

we need to make a parenthesis into the Gaussian quadrature formulas (see for example [18])

which we use to compute numerically the integrals in (4.19). Those are very useful when

integrating, over the finite interval [−1, 1], a function g(t) that behaves like (1 − t)α near

t = 1, and like (1+ t)β near t = −1, where α, β > −1. If α or β are not integer the function

g(t) will have singular derivatives, and a quadrature formula like the trapezoidal method or

the Gauss method with no weight (which is adapted when α = β = 0) will give inaccurate

results. In that case, we need to use the Gauss-Jacobi quadrature formula

∫ 1

−1
(1 − t)α(1 + t)βf(t)dt =

N
∑

j=1

Hjf(aj) + E , (4.19)
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where

g(t) = (1 − t)α(1 + t)βf(t) , (4.20)

and f(t) is infinitely differentiable with all its derivatives bounded on [−1, 1]. The abscissas

aj are the roots of the Jacobi polynomial JN (t;α, β), the weights Hj are given by

Hj = −2N + α + β + 2

N + α + β + 1

Γ(N + α + 1)Γ(N + β + 1)

Γ(N + α + β + 1)(N + 1)!

2α+β

J ′
N (aj ;α, β)JN+1(aj ;α, β)

, (4.21)

and the error E is

E =
Γ(N + α + 1)Γ(N + β + 1)Γ(N + α + β + 1)

(2N + α + β + 1) (Γ(2N + α + β + 1))2

N !22N+α+β+1

(2N)!
f (2N)(ζ) , ζ ∈ (−1, 1).

(4.22)

We take N = 15 for all our integrations, which is enough to obtain a typical accuracy of

fourteen significant digits.

Now suppose that we didn’t split the integrals in (4.5) and tried to integrate

∫ 1

−1

(

√

φ(z(t)) +
i

z(t) − pj

)

dt .

At t = −1, the first term behave like (t + 1)1/2, but because of the second term, we cannot

write the integrand in the form (4.20). This is why we had to split the integrals in (4.5).

In this way, the first and third integrals in (4.19) are of the form (4.20) with α = 0 and

β = 1
2 , while the second and fourth integrals have α = β = 0.

Note that there is an alternative to the splitting, which was used in [7]. It is to subtract

to
√

φ(z) the expression

−i√
2

√
t + 1

(z(t) − pj)

instead of −i/(z(t) − pj). In that way we can factor out the square root along the whole

path. But we find the splitting method easier, because the expression

√

φ(z) +
i

z − pj

is simpler when one simplifies it by explicitly canceling the poles. What we mean is that

this expression is prone to numerical errors, because when z is close to pj we are subtracting

two large and almost equal numbers, a cancellation error. So we need to manipulate this

expression. Namely

√

φ(z) +
i

z − pj
=

√

−η2P (z)

ηD(z)
+

i

z − pj
=

√

−η2P (z) + iηDj(z)

ηD(z)

= η
Dj(z)2 − P (z)

z − pj

(

Dj(z)
(

√

−η2P (z) − iηDj(z)
))−1

, (4.23)

where we have defined

Dj(z) ≡ D(z)

z − pj
=

∏

i6=j

(z − pi) . (4.24)
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We can cancel the apparent pole in the factor

Q(z) ≡ Dj(z)2 − P (z)

z − pj
(4.25)

because the residue condition of the quadratic differential at its poles implies that P (pj) =

Dj(pj)
2, so the numerator of (4.25) is a polynomial with a factor z − pj. Thus Q(z) is

a polynomial, and the right hand side of (4.23) is well defined, analytically as well as

numerically.

In order to use the Newton method, we still need to calculate the derivatives

∂aj
`(zi, zf ). Since φ(z) vanishes at the endpoints of the integration path, we can sim-

ply differentiate inside the integral

∂

∂aj
`(zi, zf ) =

∂

∂aj

∫

C

√

φ(z) dz =
1

2

∫

C

1
√

φ(z)

∂φ(z)

∂aj
dz . (4.26)

With the expressions (2.14) for the derivatives and the definition (4.8) of the square root,

and deforming the integration contour as before we find

∂

∂a1
`(zi, zf ) = −η

2

(

∫ pj

zi

(−1)n(z)

√

−η2P (z)
dz −

∫ pj

zf

(−1)n(z)

√

−η2P (z)
dz

)

∂

∂a2
`(zi, zf ) = −η

2

(

∫ pj

zi

z (−1)n(z)

√

−η2P (z)
dz −

∫ pj

zf

z (−1)n(z)

√

−η2P (z)
dz

)

. (4.27)

These integrals can be evaluated accurately with a Gauss-Jacobi formula with α = 0 and

β = −1
2 .

4.2 The mapping radii

We recall that the mapping radii ρj appear as a multiplicative factor in front of the local

coordinate wj in the power expansion of the maps hj from the local coordinates to the

uniformizer z (or t = 1/z for the puncture at infinity) (see Equ. (7.26)). While all other

terms in the expansion can be determined by expanding the quadratic differential, the

mapping radii can’t. Instead, they must be computed by integrating
√

φ(z) from a point

on the boundary of the ring domain of the pole, to the pole pj, and subtracting the singular

logarithm (see [9, 7])

log ρj = lim
ε→0

(

Im

∫ pj+εα

zi

√

φ(z)dz + log ε

)

, α =
zi − pj

|zi − pj|
, (4.28)

and we take zi to be one of the zeros on the boundary of the ring domain. The square root

is again defined as in (4.8) with η as in (4.14), so the residue of
√

φ(z) at z = pj is −i.

This integral is very similar to that for the complex lengths, so we know how to evaluate

it numerically. First we break the integration in two and regularize the integrand near the

pole

log ρj =lim
ε→0

(

Im

∫ z1

zi

√

φ(z)dz+Im

∫ pj+εα

z1

(

√

φ(z)+
i

z − pj

)

dz+log ε−Re

∫ pj+εα

z1

1

z − pj
dz

)
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where for definiteness we take z1 = 1
2(zi + pj). Now we can easily get rid of the limit

log ρj = lim
ε→0

(

Im

∫ z1

zi

√

φ(z)dz + Im

∫ pj+εα

z1

(

√

φ(z) +
i

z − pj

)

dz − log

∣

∣

∣

∣

εα

z1 − pj

∣

∣

∣

∣

+ log ε

)

= Im

∫ z1

zi

√

φ(z)dz + Im

∫ pj

z1

(

√

φ(z) +
i

z − pj

)

dz + log

∣

∣

∣

∣

zi − pj

2

∣

∣

∣

∣

. (4.29)

The integrand of the second term is manipulated as in (4.23) - (4.25), and both integrals

can be evaluated accurately with Gauss-Jacobi quadrature formulas.

The pole at infinity must be treated separately; we must work in the coordinate t = 1/z.

The radius is then

log ρ5 = lim
ε→0

(

Im

∫ εα

1/zi

√

φ(t)dt + log ε

)

, (4.30)

where zi is a zero on the boundary of the ring domain at infinity. One could of course

rewrite the integral in the z coordinate

∫ εα

1/zi

√

φ(t)dt =

∫ 1
εα

zi

√

φ(z)dz ,

but we prefer to integrate numerically over a finite interval, so we will stay in the t coor-

dinate. We have thus

log ρ5 = lim
ε→0

(

Im

∫ 1
2zi

1
zi

√

φ(t)dt + Im

∫ εα

1
2zi

(

√

φ(t) +
i

t

)

dt + log ε − Re

∫ εα

1
2zi

1

t
dt

)

= Im

∫ 1
2zi

1
zi

√

φ(t)dt + Im

∫ 0

1
zi

(

√

φ(t) +
i

t

)

dt + log

∣

∣

∣

∣

1

2zi

∣

∣

∣

∣

. (4.31)

The integrand of the second term can be manipulated again, as in (4.23) - (4.25), in order

to get rid of the apparent singularity at t = 0. It is understood that before doing so one

has to express φ(t) in the coordinate t.

φ(t) = φ(z = t−1)
1

t4
. (4.32)

4.3 The derivatives

In order to compute amplitudes involving not only tachyons, we need the derivatives ∂ai

∂ξj

and ∂ai

∂ξ̄j
. We don’t have expressions for these quantities that we could directly evaluate, so

we need to estimate these derivatives. We are using a Richardson’s formula of order four,

which for a function f differentiable at least five times, reads

f ′(x) =
1

6h
(f(x − h) − 8f(x − h/2) + 8f(x + h/2) − f(x + h)) + O(h4) . (4.33)

As we are working with numbers in double precision (which is usually around 16 significant

digits) we see from this formula that the most efficient h is approximately h = 10−3, which

should give a result accurate to about twelve significant digits; taking a smaller h would
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reduce the precision because of cancellation errors. If we write ξi = xi + i yi, we have

∂ξi
= 1

2(∂xi
− i ∂yi

) and ∂ξ̄i
= 1

2(∂xi
+ i ∂yi

), for each ai we thus need to evaluate the

four derivatives ∂ai

∂xj
and ∂ai

∂yj
, j = 1, 2. Each derivative calculated with (4.33) requires four

evaluation of the function, so in total we need to solve the Strebel differential at sixteen

points in order to evaluate accurately its derivatives at a given point. Note that for the

quartic vertex [7], the derivatives are calculated ([11, 12, 15]) by differentiating the fit

afit(ξ, ξ̄), but for the quintic we haven’t been able to write a reasonably short fit.

5. The reduced moduli space

In this section we describe the boundary of the reduced moduli space V0,5 (which we

sometimes call simply moduli space, without ambiguity since we always consider the re-

duced moduli space), and the methods to evaluate it numerically. To represent this four-

dimensional moduli space, we first study its projection on the ξ1-plane, this can be done al-

gebraically. Then at every point of the projection, we have to describe the two-dimensional

section in the ξ2-plane; we do this numerically.

We naturally want to reduce the numerical part of the problem to the minimum. For

this, we need to figure out what is the smallest part of V0,5 that we need to describe

numerically and still be able to integrate over the whole V0,5. We can do two successive

partitioning of the moduli space. Firstly, let five string states |Ψi〉, i = 1, . . . , 5, scattering

on a five-punctured sphere, given by a particular point m of V0,5. We can draw, on the

sphere, the critical graph of the Jenkins-Strebel quadratic differential uniquely determined

by m. For almost all m (i.e. all m ∈ V0,5 except for the ones belonging to a subset of

measure zero), the graph will delimit a prism consisting of two opposing triangles and

three quadrilaterals (see figure 1); we can thus partition the moduli space into ten regions,

according to which three of the five states belong to the quadrilateral faces of the prism. We

conformally map the sphere onto a sphere, requiring that the three quadrilateral vertices

are mapped to the standard points z = 0, z = 1 and z = ∞ (there are six such maps, but

which one we choose is irrelevant as will become clear below). Secondly, as in the case of

the quartic vertex [14, 7], we can use the six PSL(2, C) transformations that permute the

three points {0, 1,∞}, and complex conjugation, to partition further the ten regions of V0,5

into twelve parts. In total, the moduli space is thus composed of 120 parts, and we need

to describe only one of them, which we denote A5. The integration over the whole reduced

moduli space can then be written

∫

V0,5

dλ1 ∧ . . . ∧ dλ4〈Σ|b(vλ1) . . . b(vλ4)|Ψ1〉|Ψ2〉|Ψ3〉|Ψ4〉|Ψ5〉 = (5.1)

=

(

∫

A5

+

∫

1
A5

+

∫

1−A5

+

∫

1
1−A5

+

∫

1− 1
A5

+

∫

A5
A5−1

)

×

×
(

F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5) + permutations
)

+ c.c. ,

where λi are real coordinates of the reduced moduli space V0,5, and the surface state 〈Σ|
corresponds to the 5-punctured sphere given by the parameters λi. The antighost insertions
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B2

A(1)
5

Figure 7: The projection of V{0,1,∞}
0,5 on the ξ1-plane. The darker region is the projection of A5.

b(vλi
) are not needed in this section, they will be given in section 7.2. We denote

F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5) ≡ dλ1 ∧ . . . ∧ dλ4〈Σ|b(vλ1) . . . b(vλ4)|Ψ1〉|Ψ2〉|Ψ4〉|Ψ5〉|Ψ3〉 , (5.2)

and it is understood that the first three states are inserted on the quadrilateral faces (i.e.

the punctures z1 = 0, z2 = 1 and z5 = ∞). The integrand on the second line of (5.1) is the

sum of the ten permutations of F (Ψ1,Ψ2,Ψ3|Ψ4,Ψ5), each permutation being determined

by which states are assigned to the first three arguments (i.e. the quadrilaterals faces). We

are then left with six integrals that can all be written as integrals over A5 after pulling

back their integrands through the aforementioned PSL(2, C) maps, which are explicitly

z → z , z → 1

z
, z → 1 − z , z → 1

1 − z
, z → 1 − 1

z
, z → z

z − 1
. (5.3)

The six other integrals, over the complex conjugates of the six domains, can be trivially

pulled back to integrals over the six domains because the transformation is simply complex

conjugation. This contribution is therefore the complex conjugate in (5.1).

Now we need to describe A5. Let us define V{0,1,∞}
0,5 to be the part of V0,5 whose three

quadrilaterals correspond to the punctures z = 0, z = 1 and z = ∞. Its projection on the

ξ1-plane is shown on figure 7. The six mappings (5.3), and complex conjugation, transform

simultaneously ξ1 and ξ2, we could thus choose to fix either one in a given region. We
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0

η4

η3

η2

−0.6 − 2.5i

−0.6
2.4

η5

η1

eiπ/3

B1

B2

C1

C2

A(1,3)
5A(1,2)

5

A(1,1)
5

Figure 8: The projection of A5 on the ξ1-plane. At various values of ξ1, we show the section of the

moduli space in the ξ2-plane. The boxes all have the same scale. It is clearly visible that when we

approach the boundaries B1 or B2, the section shrinks to zero. The thick boundaries of the sections

are boundaries of the second kind, the others are of the first kind.

choose to keep ξ1 in the region A(1)
5 , characterized by being above the real axis, on the left

of the line Re ξ1 = 1
2 and outside the unit circle centered on zero (see figure 7); and ξ2 is

unconstrained by these mappings. So A(1)
5 is the projection of A5 on the ξ1-plane.

We will now describe the remaining boundaries of A(1)
5 , namely the two curves B1

and B2. In order to do this we must anticipate a little bit on the computation of the

two-dimensional sections of A5 (the regions in the ξ2-plane with fixed ξ1). To make

things clear, if we parameterize the four-dimensional moduli space by the four real co-

ordinates (Re ξ1, Im ξ1,Re ξ2, Im ξ2), the section Sξ1 is the subset of the ξ2-plane for which

(Re ξ1, Im ξ1,Re ξ2, Im ξ2) is inside the moduli space. We present now on figure 8, a picture

of A5, i.e. at various points ξ1 of A(1)
5 we show the section Sξ1. The boundaries of these

sections are of two kinds, the first kind is when an edge of the prism has length π, while

the boundaries of the second kind are found when an edge has vanishing length (these are

drawn with a thick line on figure 8). It is clear that when ξ1 approaches the boundaries B1

or B2, the section Sξ1 must shrink to a point. As we will see below, the sections near B1

have two boundaries of the second kind, so when this is reduced to a point, we must have

simultaneously two edges with length zero. Near B2, the sections have only one boundary

of the second kind, but three boundaries of the first kind. So on B2 we must have simulta-

neously one length zero and three lengths π. As can be checked on figure 1 and Equ. (1.5)
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by exhaustion of all possibilities, this implies that two edges have vanishing lengths. In

other words, a sphere on the boundary B1 or B2 is described by a quadratic differential

with two double zeros. We now understand the importance of the quadratic differentials

discussed in section 3.2, and we are glad that they could be solved in terms of the algebraic

curve T (`) Equ. (3.36).

What we must do now is to list all the conformal and anti-conformal maps z = h(w)

such that the poles {−1, 1, α,−α,∞} of the quadratic differentials with two double zeros

of section 3.2 are mapped to the poles in the z-plane {0, 1, ξ1, ξ2,∞}, and such that the

critical graph (figure 4) is mapped to a critical graph that is obtainable continuously from

the graph of the right of figure 2 by the vanishing of two lengths, and such that ξ1 belongs

to the region characterized by having positive imaginary part, real part smaller that 1/2

and absolute value greater than one. There are four maps obeying all these requirements.

The first one is

h1(w) =

(

α − w

2α

)

, (5.4)

which maps

h1(∞) = ∞ , h1(−α) = 1 , h1(α) = 0 , (5.5)

and ξ1 and ξ2 must therefore be the images of −1 and 1.

ξ1 = h1(−1) =

(

α + 1

2α

)

, ξ2 = h1(1) =

(

α − 1

2α

)

= 1 − ξ1 . (5.6)

This corresponds to the curve B1

B1 =

{

(

α(`) + 1

2α(`)

)

, ` ∈
[

0,
π

2

]

}

, (5.7)

where α(`) is given by (3.37). The second map is

h2(w) =
α − 1

α + 1

w − 1

w + 1
. (5.8)

It maps

h2(1) = 0 , h2(−1) = ∞ , h2(−α) = 1 ,

ξ1 = h2(∞) =
α − 1

α + 1
, ξ2 = h2(α) = ξ2

1 . (5.9)

This defines the curve B2

B2 =

{

α(`) − 1

α(`) + 1
, ` ∈

[

0,
π

2

]

}

. (5.10)

The third map is

h3(w) =
2

α + 1

w − α

w − 1
, (5.11)
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for which

h3(1) = ∞ , h3(−1) = 1 , h3(α) = 0

ξ1 = h3(−α) =
4α

(α + 1)2
, ξ2 = h3(∞) =

2

α + 1
. (5.12)

We will call the corresponding curve C

C =

{

4α(`)

(α(`) + 1)2
, ` ∈

[

0,
π

2

]

}

. (5.13)

Before we discuss the fourth map and the meaning of the third one, we need to look at

what we have found so far. At the special point ` = 0, we recall (3.38) that α(0) = 2−
√

5

and thus we find that all three curves meet at the point η3 (figure 8), where

η3 = B1|`=0 = B2|`=0 = C|`=0 = −1 +
√

5

2
. (5.14)

When ` = π
2 , the curve B1 meets the axis Re ξ1 = 1

2 at the point η2. From (3.38) we find

η2 =
1

2
+

32
√

6 + 19
√

15

54
i . (5.15)

Also when ` = π
2 , the curve B2 meets the unit circle at the point η4, given by

η4 =
27 +

(

32
√

6 + 19
√

15
)

i

27 −
(

32
√

6 + 19
√

15
)

i
. (5.16)

The situation for the curve C is a little bit different because for ` > `0 ≈ 0.67622, the

curve is outside of the allowed domain because it is inside the unit circle centered at the

origin. But we can map the piece of curve with ` > `0 back inside the domain by the map

z → 1/z̄. So the curve C gives us actually two curves C1 and C2 (and the fourth map is

just h4(w) = 1/h3(w)). We have thus

C1 =

{

4α(`)

(α(`) + 1)2
, ` ∈ [0, `0]

}

, C2 =

{

(

(α(`) + 1)2

4α(`)

)

, ` ∈
[

`0,
π

2

]

}

. (5.17)

At ` = `0 these two curves intersect on the unit circle at the point

η5 ≈ −0.47019 + 0.88256 i . (5.18)

At last, when ` = π
2 , the curve C2 meets the axis Re ξ1 = 1

2 at the point η1, with

η1 =
1

2
+

19
√

15

54
i . (5.19)

In figure 9 we show the critical graphs of the quadratic differentials obtained by map-

ping the quadratic differential of figure 4 with, respectively, h1, h2 and h3. So they are

respectively on B1, B2, and C2.
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Figure 9: The critical graphs of the quadratic differentials obtained by mapping the quadratic

differential of figure 4 with, respectively, h1, h2 and h3.

It remains now to understand the meaning of the curves C1 and C2. From figure 9 we

can be more specific by noting that on these curves, one quadrilateral and one triangle

edge are zero. By exhausting all combinations on the prism of figure 1 and Equ. (1.5),

we see that this implies that we have also three triangle edges of length π. We thus have

an intersection of three boundaries of the first kind and one boundary of the second kind.

This can happen if a boundary of the second kind of the section Sξ1 is reduced to a point.

Therefore the curves C1 and C2 partition A(1)
5 into three regions A(1,n)

5 , n = 1, 2, 3 in which

the sections Sξ1 have exactly n boundaries of the second kind. This partition is shown

on figure 8, where we can also verify the number of boundaries of the sections shown in

the boxes. We do not prove that this partitioning is as shown, but we have checked it

numerically beyond doubt.

To end this section, we briefly sketch how we plot numerically the sections. We start

by plotting the boundaries of the second kind; this is done with the quadratic differentials

with one double zero, studied in section 3.1. The end of the boundaries are detected when

a length is π, and accurately determined. We then start from one end (where, say, `i = π)

to plot a boundary of the first kind by finding the points ξ2 for which `i = π. We end either

when another length (say `j) becomes π, or when we end up very close to a boundary of

the second kind. In the first case, we determine accurately the corner (the intersection of

two boundaries) and continue by looking at the points for which `j = π. In the second

case we go on by plotting the boundary of the first kind attached to the other end of the

boundary of the second kind that we just met. We continue this process until we arrive

at the other end of the second-kind boundary from which we started. The result will be a

closed curve given by a set of points separated by an approximately fixed distance h; and

the special points at the corners of the curve are always precisely given.

6. The five-tachyon contact term

To calculate the five-tachyon contact term, we take the general formula established in [9]

for the N -tachyon term (or use Equ. (7.26)). Namely
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B1 B1 B1

N = 30 N = 70 N = 100

B2 B2 B2

η3 η3 η3

A(1)
5

Figure 10: The projection of A5 covered with grids of (N + 1) × (N + 1) points with N = 30, 70

and 100. The dots represent the points of the grids for which the section could be computed.

κ2VtN =
(−1)N−1

N !

2

πN−3

∫

V0,N

N−3
∏

i=1

dxi ∧ dyi

ρ2
i

1

ρ2
N−2(0)ρ

2
N−1(1)ρ

2
N (∞)

(6.1)

where ξi = xi + i yi. Since the five external states are the same, the integration over V0,5

can be written as 120 times the integration over A5. Therefore

κ2Vt5 =
2

π2

∫

A5

dx1 ∧ dy1 ∧ dx2 ∧ dy2 µ(ξ1, ξ̄1, ξ2, ξ̄2) , µ ≡ 1

(ρ1ρ2ρ3ρ4ρ5)2
, (6.2)

It is now a good place to explain how we perform the numerical integration. There are

five distinct steps in the process.

Step 1. First we compute the boundary of the reduced moduli space. For this we draw

a covering rectangular grid of (N + 1) × (N + 1) points on A(1)
5 , the projection of A5 on

the ξ1-plane. Then at each of the points ξ1 of the grid we attempt to plot, in the ξ2-plane,

the boundary of the section Sξ1 . In the ξ2-plane, this boundary is represented as a list of

points, and the space between two successive points is taken to be approximately h. It may

happen that the algorithm fails to find a Strebel differential because the Newton method

fails to converge (for example if we are close to a singular quadratic differential, near the

boundaries B1 or B2). In that case, the algorithm may be able to fix the problem by trying

other initial values; if this still fails the consequence may be that the algorithm is unable to

draw the section, but this is not dramatic, it simply keeps record of this failure and proceeds

to the next point of the grid. We are using three different grids which have respectively

(N,h) = (30, 0.1), (70, 0.05) and (100, 0.03). On figure 10 we show all the points of these

three grids for which the section could be plotted. We see that we have some gaps near

the boundary B1, especially near the point η3 where it meets the boundary B2. This is

not surprising because at this point the quadratic differential has two triple zeros, a very

singular point indeed. But it is clear that as we increase the number of points on the grid,
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the gaps are becoming smaller. This is due to the fact that, going from one point to the

next, the quadratic differential solver based on the Newton method, can use the solutions

of the nearby points as seeds, and of course if they are closer the Newton method will have

more chance to converge. The grid with N = 100 is however already at the limit of the

computational power of a desktop computer. We notice also a few gaps away from the

boundaries, and most noticeably there seems to be a line of gaps in the middle of the grid

N = 100. The failure there is actually not due to the Newton method but to the difficulty

of plotting the boundary of a section when one very small boundary of the first kind is

stuck between two other boundaries of the first kind. This could be fixed by improving the

algorithm, but we don’t really need to do this at this point because we will eventually use

quadratic interpolation to fix these gaps. One may worry about the size of the gaps near B1

and especially near ξ1 = η3, but we recall that near the boundaries B1 and B2 the sections

become small, and therefore the gaps actually represent a small four-dimensional volume,

and will be fixed by extrapolation. The error made by the interpolations and extrapolation

will be estimated later.

Step 2. Now we cover every section with a rectangular grid, with spacing s along the

real and imaginary directions, and at every of these points we attempt to find the Strebel

quadratic differential. Again it is possible that some differentials are not found, but this

will be fixed by interpolation (extrapolation). At every of these points, we store all the data

of the quadratic differential, i.e. ξi, ai, ∂ai/∂ξj , ∂ai/∂ξ̄j , i, j = 1, 2 and ρI , I = 1, . . . , 5.

For our three particular grids N = 30, 70 and 100, the spacing s is chosen as respectively

s = 0.1, 0.05 and 0.04. We also consider the same grid N = 70 with the smaller spacing

s = 0.04.

Step 3. We integrate µ on every sections.

M(ξ1, ξ̄1) ≡
∫

Sξ1

dx2 ∧ dy2 µ(ξ1, ξ̄1, ξ2, ξ̄2) , ξ2 = x2 + i y2 . (6.3)

because the shapes of the sections are complicated, we use a Monte-Carlo technique and

integrate the function

µ′(ξ1, ξ̄1, ξ2, ξ̄2) =

{

µ(ξ1, ξ̄1, ξ2, ξ̄2) if ξ2 ∈ Sξ1

0 otherwise
(6.4)

over a rectangle containing the section Sξ1 . To evaluate µ at random points ξ2 we use

quadratic interpolation over the closest 3 × 3 sub-array of points of the grid. Actually, we

find it more natural to interpolate log µ, and exponentiate the result of the interpolation.

Step 4. We can finally perform the whole integration
∫

A5

dx1 ∧ dy1 ∧ dx2 ∧ dy2 µ(ξ1, ξ̄1, ξ2, ξ̄2) =

∫

A
(1)
5

dx1 ∧ dy1 M(ξ1, ξ̄1) . (6.5)

We use again a Monte-Carlo technique, integrating

M ′(ξ1, ξ̄1) =

{

M(ξ1, ξ̄1) if ξ1 ∈ A(1)
5

0 otherwise
, (6.6)
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and integrate M ′ over a rectangle containing A(1)
5 . To evaluate M , we use again quadratic

interpolation of log M , and exponentiate the result of the interpolation; we observe that it

is a better interpolation that if we had simply interpolated M itself.

Step 5: error estimation. We would like to calculate an estimate of the numerical

uncertainty on the result. There are four sources of error, namely

i) The error due to the finite spacing h. In order to decide if ξ2 ∈ Sξ1 , we check if

ξ2 is inside the polygon formed by all points describing the boundary of Sξ1. This

is basically a linear interpolation, so the error made will be of the order of h2, a

potentially large error. To reduce it, we are computing the integral twice, once in the

normal way, and a second time with all the sections replaced with cruder ones with

spacing 2h. Practically we are removing half the points of every sections but keep

the corners (the intersections between boundaries). In order to isolate this source of

errors from the other sources, it is important to use the same Monte-Carlo samples

in both integrations (i.e. the sequence of random points must be the same). Let us

denote κ2Vt5(h) and κ2Vt5(2h) the results of these two integrations, and let κ2Vt5 be

the exact value. Since the error is quadratic in h, we have

κ2Vt5(2h) − κ2Vt5 = 4
(

κ2Vt5(h) − κ2Vt5
)

+ O(h3) , (6.7)

or in other words

κ2Vt5 =
1

3

(

4κ2Vt5(h) − κ2Vt5(2h)
)

+ O(h3) , (6.8)

and it will turn out that we can neglect the residual error as it will be smaller than

the other sources.

ii) The error done by the interpolation and extrapolation of µ. Let us write µ = µinter +

δµ. We will then treat this source of error as systematic, in other words

σ2 ≡
∫

A5

dx1 ∧ dy1 ∧ dx2 ∧ dy2

∣

∣δµ(ξ1, ξ̄1, ξ2, ξ̄2)
∣

∣ . (6.9)

The quadratic interpolation is done with the routine polin2 of [19]. Based on

Neville’s algorithm, it can give an estimate of δµ(ξ1, ξ̄1, ξ2, ξ̄2).

iii) the error due to the interpolation and extrapolation of M . It is a systematic error as

well. We write M = Minter + δM and

σ3 ≡
∫

A
(1)
5

dx1 ∧ dy1 |δM | (6.10)

iv) The error coming from the Monte-Carlo integrations. Those are purely statistical

errors, and the errors coming from the integrations in Step 3 will cancel down to a

negligible quantity in the final result if they are done with enough samples. We are

thus only considering the Monte-Carlo error σMC on the last integral of Step 4.
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(N,h, s) (30, 0.1, 0.1) (70, 0.05, 0.05) (70, 0.05, 0.04) (100, 0.03, 0.04)

κ2Vt5(2h) 10.0774 ± 0.065 9.95537 ± 0.013 9.95197 ± 0.010 9.93412 ± 0.008

κ2Vt5(h) 10.0045 ± 0.065 9.93535 ± 0.013 9.93252 ± 0.010 9.92648 ± 0.008

κ2Vt5 9.980 ± 0.065 9.929 ± 0.013 9.926 ± 0.010 9.924 ± 0.008

Table 1: The results of the integrations and their uncertainties on our three different grids.

So finally

σ2
κ2V

t5
=

(

2

π2

)2
(

σ2
2 + σ2

3 + σ2
MC

)

, (6.11)

and we will take enough samples in the Monte-Carlo integration so that the error will be

dominated by the errors on interpolation and extrapolation, which depend on the finesse

of the grid.

We note that Steps 1 and 2 need to be done only once for every grid. Once these have

been done, every integration requires only Steps 3, 4 and 5.

We now state our results. We use four different grids, with (N,h, s) respectively equal

to (30, 0.1, 0.1), (70, 0.05, 0.05), (70, 0.05, 0.04) and (100, 0.03, 0.04). These last two grids

are at the computational limit of a desktop computer with our C++ code. Indeed it takes

several days to compute ai(ξ1, ξ̄1, ξ2, ξ̄2) and their derivatives and ρI(ξ1, ξ̄1, ξ2, ξ̄2) at every

points of the four-dimensional grid (70, 0.05, 0.04) (which has approximately 1.6 million

points inside A5, and fills 1.3 GBytes of RAM). The grid (100, 0.03, 0.04) is actually too

large to store the derivatives of ai, so we can use it only for the computation of κ2Vt5 . The

computation of the five-dilaton contact term in section 7 will have to be done with the grid

(70, 0.05, 0.04). All the Monte-Carlo integrations are done with one iteration of the routine

vegas of [19]. The integrations of Step 3 are done with 105 samples, and the integrations

of Step 4 are done with 106 samples. Our results are shown in table 1. It is reassuring

that all four results are compatible within their error bounds. They are not statistically

independent however, and we should therefore not combine them. So we take the result

from the finest grid as final answer

κ2Vt5 = 9.924 ± 0.008 . (6.12)

7. The five-dilaton effective term

The goal of this section is to check the validity of our computation. The quartic vertex

computed in [7] was checked in [10] with marginal fields. A similar analysis is unfortu-

nately not possible here because we can couple only an even number of marginal fields

like α−1ᾱ−1c1c̄1|0〉 and the vanishing of the quintic term of its effective potential is trivial.

However we can compute the amplitude of five dilatons |D〉, where

|D〉 = (c1c−1 − c̄1c̄−1) |0〉 , (7.1)

and compare it to the prediction of the dilaton theorem.
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−i 5! κ2V eff
d5 = +

|Ψi〉

|D〉

|D〉
|D〉

|D〉

|D〉

|D〉

|D〉
|D〉

|D〉

|D〉

Figure 11: The term d5 of the dilaton effective potential. The fields |Ψi〉 that propagate in the

second diagram, are the tachyon and all the massive fields, but not the dilaton.

The dilaton theorem states that the effective potential of the dilaton should be iden-

tically zero. That the V eff
d3 term vanishes is due to the fact that the cubic amplitude of

three dilatons is zero because the ghost numbers do not work out. The vanishing of V eff
d4

is nontrivial; it has been checked in [11] that the contribution from the quartic amplitude

κ2Vd4 cancels the contribution from Feynman diagrams with two cubic vertices. This can-

cellation was found to be good to about 0.2%, furnishing a very good evidence that the

quartic computations are done right. In this section, we want to check the vanishing of

V eff
d5 . There are two contributions to this effective term shown on figure 11, namely the

contact term κ2Vd5 , and the Feynman term Cd5

κ2V eff
d5 = κ2Vd5 + Cd5 . (7.2)

We will start by evaluating the Feynman contribution, then we will compute the contact

term with the machinery developed in this paper.

7.1 The Feynman contribution

The three-string vertex can couple only an even number of states with asymmetric ghost

numbers like the dilaton. So the diagram consisting of three three-string vertices doesn’t

contribute, and the only Feynman diagram contributing to Cd5 is therefore the one shown

on the right of figure 11. To get the right relative sign between this diagram and the contact

term, we must keep track of all the coefficients. Since the vertices bring in the amplitude

a factor −i, and the propagator a factor i, we have

(−i) 5! Cd5 =

(

5

3

)

∑

i,j 6=2

(−i) {D,D,D,Ψi} (i)
(

−M−1
)

ij
(−i) {D,D,Ψj} ,

⇒ Cd5 = − 1

12

∑

i,j 6=2

{D,D,D,Ψi}
(

M−1
)

ij
{D,D,Ψj} , (7.3)

where (−M−1) is the zero-momentum propagator for all the fields except the dilaton. M

is therefore given by the quadratic term

Mij = 〈Ψi|c−0 QB |Ψj〉 , i, j 6= 2 . (7.4)
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Note that we work in a non-orthonormal basis, and M is therefore not diagonal. Cd5 must

be evaluated with level truncation, we will do explicitly the first few levels. First it is

convenient to decompose Cd5 into the sum of contributions at every level

Cd5(`) =
∑

`′≤`

cd5(`′) . (7.5)

And we will write M` for the matrix M with only fields of level `, and we define the row

vectors

C` ≡ ({D,D,Ψi})
Q` ≡ ({D,D,D,Ψi}) , (7.6)

where the index i runs over all fields of level `. With these notations, we can write

cd5(`) = − 1

12
Q` · M−1

` · CT
` . (7.7)

At level zero, only the tachyon propagates, and we thus have

Cd5(0) = − 1

12
{D,D,D, T}M−1

0 {D,D, T} = − 1

12
(−5.716)(−1

2
)(−27

16
) = 0.4020 . (7.8)

At level four, the four fields are (we are using the notations of [15])

|Ψ3〉 =
(

b−2c1c̄−2c̄1 − b̄−2c̄1c−2c1

)

|0〉 , |Ψ4〉 = c−1c̄−1|0〉
|Ψ5〉 = L−2c1L̄−2c̄1|0〉 , |Ψ6〉 =

(

c−1L̄−2c̄1 − c̄−1L−2c1

)

|0〉 . (7.9)

And we have

M4 = diag (−4, 2, 338,−52)

C4 =

(

0,− 1

48
,−4225

432
,
65

72

)

Q4 = (−4.547,−1.811,−22.33, 10.69) (7.10)

The first two lines are done with standard techniques, and the third line has been calculated

in [15], we refer the reader to [15] and [11] for the details of this computation. With these

values (7.7) gives the contribution of level four

cd5(4) = −0.03996 (7.11)

which gives the total contribution

Cd5(4) = Cd5(0) + cd5(4) = 0.3620 . (7.12)

At level six, the fields are

|Ψ7〉 =
(

b−2c̄−2c̄−1c̄1 − b̄−2c−2c−1c1

)

|0〉 , |Ψ8〉 =
(

L−2c̄−3c̄1 − L̄−2c−3c1

)

|0〉
|Ψ9〉 = L−2L̄−2 (c̄−1c̄1 − c−1c1) |0〉 , |Ψ10〉 =

(

b−3c1c̄−3c̄1 − b̄−3c̄1c−3c1

)

|0〉
|Ψ11〉 =

(

b−3c1L̄−2c̄−1c̄1 − b̄−3c̄1L−2c−1c1

)

|0〉 ,

|Ψ12〉 = c−2c̄−2|0〉 , |Ψ13〉 = L−3c1L̄−3c̄1|0〉
|Ψ14〉 = b−2c−1c1b̄−2c̄−1c̄1|0〉 , |Ψ15〉 =

(

c−2L̄−3c̄1 − c̄−2L−3c1

)

|0〉
|Ψ16〉 =

(

c−2b̄−2c̄−1c̄1 − c̄−2b−2c−1c1

)

|0〉 ,

|Ψ17〉 =
(

L−3c1b̄−2c̄−1c̄1 − L̄−3c̄1b−2c−1c1

)

|0〉 ,
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` 0 4 6 8 10

Cd5(`) 0.4020 0.3620 0.3259 0.3167 0.3112

Table 2: The value of Cd5 with propagating fields up to level `.

and we have

M6 =
(

8
)

⊕











0 0 0 −104

0 −1352 0 0

0 0 −8 0

−104 0 0 0











⊕







0 0 4

0 10816 0

4 0 0






⊕







0 0 416

0 8 0

416 0 0






(7.13)

C6 =
100

729
(−8, 0, 0, 0, 0, 1, 0, 4, 0, 4, 0)

Q6 = (−2.103, 2.363,−20.92,−0.4412, 7.090, 0.1251,−49.67, 0.4998, 4.325, 1.603,−8.649) .

And we find

cd5(6) = −0.03606 , (7.14)

which gives the total contribution

Cd5(6) = Cd5(4) + cd5(6) = 0.3259 . (7.15)

With the techniques developed in [7, 10 – 12, 15], we can evaluate {D,D,D,Ψi} for

fields Ψi of level up to ten. The results for Cd5(`), ` = 0, 4, 6, 8, 10 are shown in table 2.

We will follow the method used in [11] to extrapolate the above results to ` = ∞. Namely

we use a fit of the form

Cd5(`) = f0 +
f1

`γ
. (7.16)

In fitting Cd4(`), the authors of [11] found that γ = 3 give the best results. Here by fitting

the four values Cd5(`), ` = 4, 6, 8, 10 with (7.16), we find that γ = 2.51. We take this as an

evidence that the data should be fitted with

Cd5(`) = f0 +
f1

`5/2
. (7.17)

With this last fit we find

Cd5 = Cd5(∞) = 0.3060 . (7.18)

7.2 The contact term

The multilinear N -string function at genus zero is given by [1, 9]

{Ψ1, . . . ,ΨN} =

(

i

2π

)N−3 ∫

V0,N

dλ1 ∧ . . . ∧ dλ2(N−3)〈Σ|b(vλ1) . . . b(vλ2(N−3)
)|Ψ1〉 . . . |ΨN 〉 .

(7.19)

The λi are 2(N − 3) real coordinates of the reduced moduli space V0,N of the N -punctured

spheres, and the surface state 〈Σ| corresponds to the N -punctured sphere given by the
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parameters λi. The antighost insertions b(vλi
) are given by

b(vλi
) =

N
∑

I=1

∞
∑

m=−1

(

HI
i,mb(I)

m + HI
i,mb̄(I)

m

)

, where HI
i,m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂λi
. (7.20)

The hI(wI ;λ1, . . . λ2(N−3)) are the N maps from the local coordinates wI to the sphere,

which are going to be described a little later. Now we follow [11] and rewrite the antighost

insertions in a more convenient form. First we rename the coordinates of the moduli space

as

ξi = xi + i yi , where xi = λ2i−1 , yi = λ2i , i = 1, . . . , N − 3 , (7.21)

where the ξi are the complex coordinates naturally used in the quadratic differentials

formalism. We have

dxi ∧ dyi b(vxi
)b(vyi

) = dξ ∧ dξ̄ BiB?
i = −2i dxi ∧ dyi BiB?

i , (7.22)

where

Bi =

N
∑

I=1

∞
∑

m=−1

(

BI
i,mb(I)

m + CI
i,mb̄(I)

m

)

, B?
i =

N
∑

I=1

∞
∑

m=−1

(

CI
i,mb(I)

m + BI
i,mb̄(I)

m

)

, (7.23)

and the coefficients BI
i,m and CI

i,m are given in terms of derivatives with respect to ξi and

ξ̄i

BI
i,m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξi
, CI

i,m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξ̄i
. (7.24)

And we arrive at the formula

{Ψ1, . . . ,ΨN} = (7.25)

1

πN−3

∫

V0,N

dx1 ∧ dy1 ∧ . . . ∧ dxN−3 ∧ dyN−3〈Σ| (BB?)1 . . . (BB?)N−3 |Ψ1〉 . . . |ΨN 〉 .

We will now consider the case of interest, N = 5 and |Ψi〉 = |D〉, where |D〉 is the

dilaton (7.1). we will thus only need the coefficients BI
i,m and CI

i,m with m = −1 and

m = 1. To evaluate them, we need to expand the maps hI to order w3
I

z = hI(wI ; ξ1, ξ̄1, ξ2, ξ̄2) = zI + ρI wI + ρ2
IβI w2

I + ρ3
IγI w3

I + O(w4
I ) , (7.26)

where all the coefficients on the right-hand side depend on ξ1, ξ̄1, ξ2 and ξ̄2. The zI are

the positions of the finite poles on the z-plane, namely

z1 = 0 , z2 = 1 , z3 = ξ1 , z4 = ξ2 . (7.27)

For the puncture at infinity, we must use the coordinate t = 1/z

t = h5(w5; ξ1, ξ̄1, ξ2, ξ̄2) = ρ5 w5 + ρ2
5β5 w2

5 + ρ3
5γ5 w3

5 + O(w4
5) . (7.28)
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We can now use (7.24) to express the coefficients that we need. We find

BI
1,−1 =

1

ρ3
δ3,I , BI

2,−1 =
1

ρ4
δ4,I , CI

i,−1 = 0

BI
1,1 = ρI

∂βI

∂ξ1
+

1

2
ρ3ε3δI,3 , BI

2,1 = ρI
∂βI

∂ξ2
+

1

2
ρ4ε4δI,4 , CI

i,1 = ρI
∂βI

∂ξ̄i
, (7.29)

where

εI ≡ 8β2
I − 6γI . (7.30)

The coefficients βI and γI can be calculated from the expression of the quadratic differen-

tial (2.4) and (2.12). First we expand ϕ = φ(z)(dz)2 around the puncture zI

φ(z) = − 1

(z − zI)2
+

rI
−1

(z − zI)
+ rI

0 + O(z) , (7.31)

and knowing that in the local coordinates ϕ takes the canonical form

ϕ = − 1

w2
I

(dwI)
2 , (7.32)

we find the relations

βI =
1

2
rI
−1 , γI =

1

16

(

7(rI
−1)

2 + 4(rI
0)

2
)

. (7.33)

And after expanding φ(z) to obtain rI
−1 and rI

0, we find

β1 =
a1 − ξ2

1 − ξ2
2

2ξ1ξ2

β2 = −a1 + a2 + 2ξ1 − ξ2
1 + 2ξ2 − ξ2

2

2(ξ1 − 1)(ξ2 − 1)

β3 =
a1 − 2ξ2

1 − ξ2
2 + ξ1(3 + a2 + 2ξ2)

2ξ1(ξ1 − 1)(ξ2 − ξ1)

β4 =
a1 − ξ2

1 + 2ξ1ξ2 + ξ2(3 + a2 − 2ξ2)

2ξ2(ξ2 − 1)(ξ1 − ξ2)

β5 = −1

2
(2 + a2 + ξ1 + ξ2) , (7.34)

and for εI = 8β2
I − 6γI , we find

ε1=
−5(u − a1)

2 + 12
(

(ξ3
1 + ξ2

2)(1 + ξ2) − a1(s + t) + ξ2
1(1 − ξ2 + ξ2

2) + t(−3 − a2 − ξ2 + ξ2
2)

)

8t2

ε2=
−5(u − 2s − a1 − a2)

2 − 12 (5s − 7u + 2w + t(4s − 5 − u − t) − a2(s − 2) − a1(2s − t − 3))

8(t − s + 1)2

ε3=
1

8(ξ1(ξ1 − ξ2)(ξ1 − 1))2
(

4ξ3
1(10ξ1 − 15 − a2 − 14ξ2) − a1(5a1 + 16ξ2

1 + 2ξ1(3 + 5a2 − 2ξ2)

+2(6 − 5ξ2)ξ2) + ξ2
2(12(1 + ξ2) − 5ξ2

2) − 2t(12 + 9ξ2 − 5a2ξ2 + 2ξ2
2)

+ξ2
1(15 − 18a2 − 5a2

2 + 24ξ2 − 8a2ξ2 + 44ξ2
2)

)
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ε4=
−1

8(ξ2(ξ1 − ξ2)(ξ2 − 1))2
(

−a1(−5a1 + 10ξ2
1 − 12ξ1 + 4t + 2(−5a2 − 3 − 8ξ2)ξ2)

+2ξ2
1(−6 + (9 − 5a2)ξ2 − 22ξ2

2) + 8t(3 − (3 − a2)ξ2 + 7ξ2
2)

−ξ2
2(15 − 18a2 − 5a2

2 − 60ξ2 − 4a2ξ2 + 40ξ2
2) + ξ3

1(5ξ1 − 12 + 4ξ2)
)

ε5=
1

8
(16 + 12a1 + 4s + 7u + 2t + a2(−5a2 − 8 + 2s)) , (7.35)

where we have defined

s ≡ ξ1 + ξ2 , t ≡ ξ1ξ2 , u ≡ ξ2
1 + ξ2

2 , w ≡ ξ3
1 + ξ3

2 . (7.36)

We will also need to compute a few correlators. To see which ones, it is best to start

expanding the antighost insertions. It is easily seen from the expression for the dilaton

and the fact that only the correlators with ghost number (3, 3̄) do not vanish, that we need

either three b’s and one b̄, or one b and three b̄’s; and as already mentioned we only need

antighost oscillators with indices −1 or 1. Let us expand (BB?)1 (BB?)2 in the following

way: we take all terms in the first factor that have either two b’s or two b̄’s and mixed

terms in the second factor. The rest of the expression, with mixed terms in the first factor,

can be found simply by changing some indices

(BB?)1 (BB?)2 = (7.37)
(

B3
1,−1b

(3)
−1

5
∑

I=1

CI
1,1b

(I)
1 −B3

1,−1b̄
(3)
−1

5
∑

I=1

CI
1,1b̄

(I)
1 +

∑

I 6=J

BI
1,1C

J
1,1b

(I)
1 b

(J)
1 −

∑

I 6=J

BI
1,1C

J
1,1b̄

(I)
1 b̄

(J)
1

)

×
(

B4
2,−1b

(4)
−1

∑

I 6=4

BI
2,1b̄

(I)
1 −B4

2,−1b̄
(4)
−1

∑

I 6=4

BI
2,1b

(I)
1 +

∑

I 6=J

M IJ
2 b

(I)
1 b̄

(J)
1

)

+
(

1 ↔ 2 , 3 ↔ 4
)

,

where

M IJ
i ≡ BI

i,1B
J
i,1 − CI

i,1C
J
i,1 , (7.38)

and the last term is obtained by changing as indicated the left subscripts of B and C, the

subscript of M , and all superscripts. Noting that

b−1|D〉 = c−1|0〉 , b1|D〉 = −c1|0〉 , b̄−1|D〉 = −c̄−1|0〉 , b̄1|D〉 = c̄1|0〉 , (7.39)

we see from (7.38), that we need the following open correlators

AIJ ≡ 〈(c−1c1)
(I), c

(J)
−1 〉o , BIJ ≡ 〈(c−1c1)

(I), c
(J)
1 〉o (7.40)

CIJK ≡ 〈c(I)
1 , c

(J)
1 , c

(K)
1 〉o , DIJK ≡ 〈c(I)

−1, c
(J)
1 , c

(K)
1 〉o , EIJK ≡ 〈c(I)

−1, c
(J)
−1 , c

(K)
1 〉o .

The conventions for the closed correlators are as in [11]

〈c(z1)c(z2)c(z3)c̄(w̄1)c̄(w̄2)c̄(w̄3)〉 = −2〈c(z1)c(z2)c(z3)〉o 〈c̄(w̄1)c̄(w̄2)c̄(w̄3)〉o , (7.41)

and the open correlator is

〈c(z1)c(z2)c(z3)〉o = (z1 − z2) (z1 − z3) (z2 − z3) . (7.42)
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AIJ and BIJ were already calculated in [11]. For the other correlators, we can use either

the conformal transformation of the operator 1
2∂2c(z) corresponding to c−1 (as in [11]), or

conservation laws as in [15]. We find when I, J,K 6= 5 (with the definition zIJ ≡ zI − zJ ):

AIJ = ρJ

(

βJ − βI − 2βIβJzIJ +
1

2
εJzIJ(1 − βIzIJ)

)

BIJ =
1

ρJ
zIJ(1 − βIzIJ)

CIJK =
1

ρIρJρK
zIJzIKzJK (7.43)

DIJK =
ρI

ρJρK

(

zJK − βI(zIK + zIJ)zJK +
1

2
εIzIJzJKzIK

)

EIJK =
ρIρJ

ρK

(

βI − βJ + βIβJ (zIJ + zIK − zJK) +
1

2
εJzJK − 1

2
βIεJ(zIJ + zIK)zJK+

+
1

2
εI

(

−zIK + βJzIK(zJK − zIJ) +
1

2
εJzIJzIKzJK

))

, I, J,K 6= 5 .

The cases when oscillators are at infinity must be treated separately. Since B5
i,−1 and C5

i,−1

are zero, we cannot have a c−1 alone at infinity. We therefore need

A5J = ρJ

(

1

2
εJ(β5 + zJ) − βJ

)

BI5 =
βI

ρ5
,

B5J =
1

ρJ
(zJ + β5) CIJ5 =

zJI

ρIρJρ5
,

DIJ5 =
ρI

ρJρ5

(

βI −
1

2
εIzIJ

)

EIJ5 =
ρIρJ

ρ5

(

1

2
βIεJ − 1

2
εIβJ − 1

4
εIεJzIJ

)

,

(7.44)

and we note that CIJK is totally antisymmetric, DIJK is antisymmetric in J and K, and

EIJK is antisymmetric in I and J .

We can now write the integrand of (7.26) with five dilatons from (7.38) and the defi-

nitions (7.40).

〈Σ| (BB?)1 (BB?)2 |D〉|D〉|D〉|D〉|D〉 = (7.45)

= 4Re







1

ρ3ρ4

∑

36=46=I 6=J 6=K

{

Ak3

(

D4IJCI
2,1B

J
1,1 − BIJC4

2,1B
J
1,1 + BJIC

I
2,1B

4
1,1

)

+

+AK4

(

D3IJCI
1,1B

J
2,1 − BIJC3

1,1B
J
2,1 + BJIC

I
1,1B

3
2,1

)

+BKJ

(

−E34I

(

CI
1,1B

J
2,1 − CI

2,1B
J
1,1

)

+ BJ
2,1

(

AI3C
4
1,1 − AI4C

3
1,1

)

+BJ
1,1

(

AI4C
3
2,1 − AI3C

4
2,1

)

)}

+
1

ρ3

∑

36=I 6=J 6=K 6=L

{

BLK

(

−D3IJCI
1,1M

JK
2 + BIJC3

1,1M
JK
2 − BJIC

I
1,1M

3K
2

+BK
1,1

(

−D3IJBI
2,1C

J
2,1 + BIJB3

2,1C
J
2,1 − BJIB

I
2,1C

3
2,1

)

)

− CIJKAL3B
I
2,1C

J
2,1B

K
1,1

}

+
1

ρ4

∑

46=I 6=J 6=K 6=L

{

BLK

(

−D4IJCI
2,1M

JK
1 + BIJC4

2,1M
JK
1 − BJIC

I
2,1M

4K
1
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(N,h, s) (30, 0.1, 0.1) (70, 0.05, 0.05) (70, 0.05, 0.04)

κ2Vd5(2h) −0.30666 ± 0.0093 −0.30768 ± 0.0023 −0.30759 ± 0.0016

κ2Vd5(h) −0.30343 ± 0.0093 −0.30666 ± 0.0023 −0.30660 ± 0.0016

κ2Vd5 −0.3024 ± 0.0093 −0.3063 ± 0.0023 −0.3063 ± 0.0016

Table 3: The results of the integration ( 7.46) and its uncertainty on three different grids.

+BK
2,1

(

−D4IJBI
1,1C

J
1,1 + BIJB4

1,1C
J
1,1 − BJIB

I
1,1C

4
1,1

)

)

− CIJKAL4B
I
1,1C

J
1,1B

K
2,1

}

+
∑

I 6=J 6=K 6=L6=T

CIJKBTL

(

BI
1,1C

J
1,1M

KL
2 + BI

2,1C
J
2,1M

KL
1

)







.

With (7.29), (7.34), (7.35), (7.43) and (7.44), this expression can be expressed in terms

of ξi, ai, ∂ai/∂ξj , ∂ai/∂ξ̄j and ρI , and we can therefore integrate it numerically over the

reduced moduli space of five-punctured spheres. Since we have five times the same state,

the result is simply 120 times the integral on A5, thus

κ2Vd5 =
1

5!
{D,D,D,D,D}

=
1

π2

∫

A5

dx1 ∧ dy1 ∧ dx2 ∧ dy2〈Σ| (BB?)1 (BB?)2 |D〉|D〉|D〉|D〉|D〉 . (7.46)

We do the integration as in section 6, on three different grids. The results are shown in

table 3. They are compatible within their error bounds, and we take again the result from

the finest grid as final answer

κ2Vd5 = −0.3063 ± 0.0016 . (7.47)

We see that (7.18) and (7.47) cancel each other with a precision of about 0.1%, well

within the error bound of 0.5% on the contact term (7.47). This is solid evidence that our

computations are reliable.

8. Conclusions and prospects

In the light of the verification successfully made in section 7, that the effective potential

of the dilaton vanishes at order five, we can claim that the techniques described in this

paper work well, that the reduced moduli space is understood and described right, and

that our implementation of the algorithm gives reliable results. In particular we trust the

value (6.12) obtained for the contact term of five tachyons. It is also a good check of the

consistency of CSFT itself.

We are able to estimate the uncertainty made in the computation of terms (see (6.12)

and (7.47)). However we want to mention here that we have been quite conservative in this

estimation. In particular the errors on the fits were treated as systematic instead of indepen-

dent. This is only half right because we expect interpolations made from different samples

to be more or less independent, although two interpolations at two nearby points using
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the same sample are not independent. The overestimation of the error seems confirmed by

the values in tables 1 and 3. However one should be careful in this respect because, as we

already mentioned, we don’t think that the errors made on different grids are independent

either. So unless we find a better way of estimating the error, we will stick to our conser-

vative estimation. Any way, we emphasize that the errors on any given term will probably

be no more than 0.5%, the error we find for the five-dilaton term (which is calculated from

a very long expression). And this precision is probably enough to do level truncation.

The effect of the five-tachyon term (6.12) on the stable vacuum is studied in [15].

However this term of level zero isn’t enough to draw any conclusion. For this, it will be

necessary to compute other terms at higher level. At level two there is only one term,

namely four tachyons and one dilaton Vt4d. At level four we’ll have five terms, Vt3d2 and

Vt4ψi
where |Ψi〉, i = 3, . . . , 6, are the four scalar fields at level four. The main difficulty in

computing these terms will be that when we have different external states, the integrations

on the 120 pieces of reduced moduli space won’t be all equal, and it will require some

(straightforward but lengthy) work to express them as one integral over A5; the extreme

case being when we have five different states, we will have 60 different integrals (complex

conjugation is always trivial and divides the number of integrations by two). But the

computation of interactions to level four is certainly not that bad. By automatizing the

computation of oscillator algebra and correlators, as in [15], it might be possible to compute

higher levels as well.

At last, it would be useful to make our numerical data available, so that readers can

use it to make their own computations of quintic terms. Ideally we would like to create fits

of the boundaries of the moduli space and the parameters of the quadratic differentials a1

and a2 and the mapping radii, that could hold in a paper and be entered in a computer

in a reasonable amount of time. This is under study, but we are a bit pessimistic given

the dimensionality and rather complicated shape of the reduced moduli space (our data

describing its boundary is about 600 megabytes large).
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